TECHNO-ECONOMICS OF RAINWATER HARVESTING TECHNOLOGY
FOR DOMESTIC USAGE AND COOLING

ABDURAHIM ALMABRUK SHATEWI

A project report submitted in partial fulfillment of
the requirements for the award of the degree of
Master of engineering (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

MAY 2008
DEDICATION

Who Always Pushes Me Forward My Father.

Who Takes Care of Me Growing Up My Mother.

Whom Take My Success As Guide For Their Success My Brothers.

Who Smiles For My Smile My Wife.

Who Gave Me the Knowledge My Lecturers.

Whom Joined Me This Way My Classmates.

Who Ever Supported Me To Accumulate This Research. ! ! !

Abdurahim Almabruk Shatewi
ACKNOWLEDGEMENTS

First I wish to express my gratitude and greats to Allah to facilitate joining this interesting course in University Technology Malaysia. Second, I wish to express my appreciation and big thanks to Associate Professor Dr. Sanjayan Velautham for his guidance and concern for this project for a better research performance. It was a nice experience to have him as my project supervisor. Thirdly, I wish to express my thanks to Kolej 10 Management for their concern. And, I wish to thank Malaysian Metrology Department PJ for their corporation. Finally, I wish to express my thanks to William Solomon Pakinathan for his assistance during this research.

Abdurahim Almabruk Shatewi
ABSTRAK

ABSTRACT

The study on the use of rainwater as a supplementary water supply for residential dwellings was conducted. This study elaborates rainwater harvesting systems that can be applied at residential dwellings with an additional passive cooling system. The analysis was conducted by building a database of rainfall in the test area. The monthly household use was estimated to determine the sizing for the rainwater harvesting system. This analysis was then used to determine the optimum size of the overall rainwater harvesting system. A passive cooling system using rainwater as the cooling agent was designed to reduce indoor temperatures. This passive cooling would contribute to the reduction of the indoor temperatures and the cooling load of the air conditioning system, which will in turn, reduces electrical energy consumption. A proposed cost analysis will be conducted on the prototype system to determine its economic feasibility to be applied at residential dwellings. This economic review will also included the savings from water and electricity bills. These savings will be used to determine the simple payback period on the initial investment to build the systems. From the study we can make some comparisons and conclude the viability of implementing the system in terms of monetary savings and the long term application of a sustainable and renewable source of water.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction 1

1.1.1 Brief History 2

1.1.2 Cooling Energy Consumption 2

1.2 Problem Statement 4

1.3 Aim And Objectives Of Study 4

1.4 Scope Of Study 5

2 LITERATURE REVIEW

2.1 Introduction 6

2.2 Rainfall Runoff Available 7

2.3 Harvested Rainwater Quality 7
2.4 Rainwater Harvesting System
 2.4.1 Tank 9
 2.4.2 First Flush Diverters 10
 2.4.3 Leaf Screen 11
2.5 Passive Cooling Techniques 12
2.6 Evaporative Cooling To Supply Cool Air 13
 2.6.1 Evaporative Cooling Systems 14
 2.6.1.1 Direct Evaporative System 14
 2.6.1.2 Indirect Evaporative Cooler 14
 2.6.1.3 Indirect-Direct Evaporative Cooler 15
 2.6.2 Evaporating Cooling Advantages 16
2.7 Ventilation To Remove The Heat 17
 2.7.1 Natural Ventilation 17
 2.7.1.1 Fan Ventilation 17
 2.7.1.2 Attic And Roof Ventilation 17
 2.7.1.3 Solar Chimneys 18
2.8 Block Heat From Entering The Building 18
 2.8.1 Shading 19
 2.8.1.1 Exterior Shading 19
 2.8.1.2 Interior Shading 20
 2.8.2 Roof Insulation 20
 2.8.2.1 Painting By White Cement 26
 2.8.2.2 Vermiculite–Cement Thermal Insulation 26
 2.8.2.3 Roof Pond Cooling And Heating 26
 2.8.2.4 Evaporative Cooling 26
 2.8.2.5 Broken White Glazed Tile Pieces Stuck Over The Roof 27
 2.8.2.6 Air Void Thermal Insulation on the roof 27
 2.8.2.7 Sania Thermal Insulation 27
3 RESEARCH METHODOLOGY 29
3.1 Introduction 29
3.2 A Selection Case Study 30
3.3 Rainwater Harvesting System Design 31
3.4 Passive Cooling System Design (Spray Water On The Roof) 32
3.5 Fabrication And Installation Of Both Systems Prototype 33
3.6 Prototype Testing And Checking 33
3.7 Experimental Data Acquisitions 33
 3.7.1 Rainwater Harvesting System Data 33
 3.7.2 Spray Water On The Roof System Data 34
3.8 Result Analysis Of Technical Data 34

4 RAINWATER HARVESTING DESIGN CONCEPTION AND CALCULATIONS 35
4.1 Introduction 35
4.2 The Conception Of Design 35
 4.2.1 Catchment Surface 36
 4.2.1.1 Metal 37
 4.2.1.2 Clay/Concrete Tile 37
 4.2.1.3 Composite Or Asphalt Shingle 38
 4.2.1.4 Wood Shingle, Tar, And Gravel 38
 4.2.2 The Amount Of Rainwater 38
 4.2.3 Conveyance Systems (Gutters And Downspouts) 39
 4.2.3.1 Gutters 40
 4.2.3.2 Downspouts 41
 4.2.4 Roof Wash (Leaf Screens And First-Flush Diverters) 41
 4.2.4.1 Leaf Screens 41
 4.2.4.2 First-Flush Diverters 42
 4.2.5 Storage Tanks 43
4.2.5.1 Storage Tank Basics 44
4.3 Rain Water Harvesting Calculations And Fabrication 44
 4.3.1 Catchment Surface 46
 4.3.2 Conveyance Systems (Gutters And Downspouts) 47
 4.3.2.1 Gutters 47
 4.3.2.2 Downspouts 47
 4.3.3 Roof Wash (Leaf Screens And First-Flush) 49
 4.3.3.1 Leaf Screen 49
 4.3.3.2 First Flush Diverter 50
 4.3.4 The Tank 53
 4.3.4.1 The Tank Volume Calculation 54
 4.3.5 The Distribution Pipes 55
 4.3.6 The Pump 55
 4.3.7 The Water Spry On The Roof Pipe 56
 4.3.7.1 First Trail 57
 4.3.7.2 Second Trail 59

5 RESULTS AND ANALYSIS 61
5.1 Introduction 61
5.2 Rainwater Harvesting 61
 5.2.1 Rainwater Harvesting System 61
 5.2.2 The Harvested Rainwater 63
 5.2.3 Harvested rainwater quality 66
5.3 The Passive Cooling System (Spray Water On The Roof) 67
 5.3.1 The Experimental Results Of Temperature Distribution
 5.3.1.1 Dry Test 70
 5.3.1.2 Continued Spray Water On The Roof 73
 5.3.1.3 Intermittent Spray Water On The Roof 77
5.3.2 Passive cooling results analysis
 5.3.2.1 Water tank temperature
 5.3.2.2 Roof temperature
 5.3.2.3 Room temperature
 5.3.3 Water losses during the passive cooling tests
 5.3.4 Actual pump working duration time

6 TECHNO-ECONOMICS ANALYSIS

6.1 Introduction

6.2 Techno-Economics of Rainwater Harvesting
 6.2.1 Estimation of water demand
 6.2.2 The harvested rainwater amount by a house roof

6.3 Techno-Economics of Cooling By Spray The Water On The Roof
 6.3.1 The electrical consumption of the water pump and the water losses
 6.3.2 Heat gain reduction through the roof
 6.3.3 Passive cooling system water amount needed
 6.3.4 The cost of the system equipment and installation

6.4 The Techno-Economics for Actual House
 6.4.1 Harvested rainwater saving
 6.4.2 The saving due to the cooling by intermittent spray water on the roof
 6.4.3 The cost of the system equipment and installation for actual house

7 CONCLUSION AND RECOMMENDATION

7.1 Conclusion

7.2 Recommendation

REFERENCES

Appendices A - C
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TABLE TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Harvested rainwater quality results</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Performance of different passive techniques</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Runoff coefficients based on surface type</td>
<td>39</td>
</tr>
<tr>
<td>5.1</td>
<td>Theoretical and practical harvested rainwater for few days</td>
<td>64</td>
</tr>
<tr>
<td>5.2</td>
<td>Two harvested rainwater samples analysis</td>
<td>66</td>
</tr>
<tr>
<td>5.3</td>
<td>Water losses</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>Pump actual working duration time</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>comparison between continued sprayed and intermittent methods</td>
<td>88</td>
</tr>
<tr>
<td>6.1</td>
<td>Indoor Water Demand</td>
<td>91</td>
</tr>
<tr>
<td>6.2</td>
<td>Outdoor Water Demand</td>
<td>91</td>
</tr>
<tr>
<td>6.3</td>
<td>Pump electrical consumption and water losses for all the tests</td>
<td>96</td>
</tr>
<tr>
<td>6.4</td>
<td>Roof and Room temperatures for both Dry and Wet roofs</td>
<td>98</td>
</tr>
<tr>
<td>6.5</td>
<td>System cost details</td>
<td>102</td>
</tr>
<tr>
<td>6.6</td>
<td>Compulsory parts cost details</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Min and Max Rainfall Data for Johor</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Rainwater Harvesting System</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Polypropylene and Galvanized Steel Tanks</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Stand Pipe First Flush Diverter with Ball Valve</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Leaf Screen</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Direct evaporative system</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Indirect evaporative cooler</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>Indirect-direct evaporative cooler</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Types of roof vents.</td>
<td>18</td>
</tr>
<tr>
<td>2.10</td>
<td>Summer and winter roof overhang</td>
<td>19</td>
</tr>
<tr>
<td>2.11</td>
<td>Bar roof with out any treatment</td>
<td>21</td>
</tr>
<tr>
<td>2.12</td>
<td>Roof with insulation beneath</td>
<td>21</td>
</tr>
<tr>
<td>2.13</td>
<td>Wetted roof surface (evaporative cooling)</td>
<td>22</td>
</tr>
<tr>
<td>2.14</td>
<td>Roof with movable insulation and roof pond open pond during night</td>
<td>23</td>
</tr>
<tr>
<td>2.15</td>
<td>WhiteCap™ Roof Spray Cooling System</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of the research methodology</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Rainwater harvesting system</td>
<td>31</td>
</tr>
</tbody>
</table>
3.3 Passive cooling systems (spray water on the roof) 32
4.1 Footprint area of catchment surface 37
4.2 Dowenspots – roof area relation 41
4.3 Leaf screen 42
4.4 First-flush diverters pipe 44
4.5 Case study in kolge 10 UTM Skudi 45
4.6 Sketch for the building including the systems components 45
4.7 The complete system installed to the building 46
4.8 The downspouts pipes 48
4.9 The gutters after the installation 49
4.10 Leaf Screen 50
4.11 The dimensions of the first flush divert 52
4.12 The first flush diverts 53
4.13 Polyethylene tank 54
4.14 Tank dimensions (sketch drawing) 55
4.15 Distribution pipes and Water pump 56
4.16 Water spray first trail 57
4.17 Water spray pipe first trail 58
4.18 First trail wet roof surface 58
4.19 Water spray second trail 59
4.20 Second trail wet roof surface 60
5.1 Sketch for the tank dimensions 63
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Fully shading roof</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Six point’s data logged</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Dry test 1-1</td>
<td>71</td>
</tr>
<tr>
<td>5.5</td>
<td>Dry test 1-2</td>
<td>72</td>
</tr>
<tr>
<td>5.6</td>
<td>Wet roof tests 2-1</td>
<td>73</td>
</tr>
<tr>
<td>5.7</td>
<td>Wet roof tests 2-2</td>
<td>74</td>
</tr>
<tr>
<td>5.8</td>
<td>Wet roof tests 2-3</td>
<td>75</td>
</tr>
<tr>
<td>5.9</td>
<td>Wet roof tests 2-4</td>
<td>76</td>
</tr>
<tr>
<td>5.10</td>
<td>Intermittent spray water tests 3-1</td>
<td>78</td>
</tr>
<tr>
<td>5.11</td>
<td>Intermittent spray water tests 3-2</td>
<td>79</td>
</tr>
<tr>
<td>5.12</td>
<td>Intermittent spray water tests 3-3</td>
<td>80</td>
</tr>
<tr>
<td>5.13</td>
<td>Intermittent spray water tests 3-4</td>
<td>81</td>
</tr>
<tr>
<td>5.14</td>
<td>Water tank temperatures for all the tests</td>
<td>82</td>
</tr>
<tr>
<td>5.15</td>
<td>Water tank temperatures for no sunny tests</td>
<td>83</td>
</tr>
<tr>
<td>5.16</td>
<td>Roof temperatures for all the tests</td>
<td>84</td>
</tr>
<tr>
<td>5.17</td>
<td>Roof temperatures for no sunny tests</td>
<td>84</td>
</tr>
<tr>
<td>5.18</td>
<td>Room temperatures for all the tests</td>
<td>85</td>
</tr>
<tr>
<td>5.19</td>
<td>Room temperatures for no sunny tests</td>
<td>86</td>
</tr>
<tr>
<td>6.1</td>
<td>Annual rainfall for the last ten years</td>
<td>92</td>
</tr>
<tr>
<td>6.2</td>
<td>Monthly rainfall 2007-08</td>
<td>93</td>
</tr>
<tr>
<td>6.3</td>
<td>Monthly harvested rainwater 2007-08</td>
<td>93</td>
</tr>
<tr>
<td>6.4</td>
<td>Harvested rainwater Daily average per month 2007-08</td>
<td>94</td>
</tr>
<tr>
<td>6.5</td>
<td>Monthly extra harvested rainwater</td>
<td>94</td>
</tr>
<tr>
<td>6.6</td>
<td>Daily average extra harvested rainwater</td>
<td>95</td>
</tr>
<tr>
<td>6.7</td>
<td>Heat gain for both dry and wet roof of case study building</td>
<td>99</td>
</tr>
<tr>
<td>6.8</td>
<td>The reduction heat gain cause of wet roof of case study building</td>
<td>99</td>
</tr>
<tr>
<td>6.9</td>
<td>Heat gain for both dry and wet roof for actual house</td>
<td>100</td>
</tr>
<tr>
<td>6.10</td>
<td>The reduction heat gain cause of wet roof for actual house</td>
<td>101</td>
</tr>
<tr>
<td>6.11</td>
<td>System installed to actual house</td>
<td>104</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>Cross-section area of downspouts pipe (1)</td>
</tr>
<tr>
<td>A_2</td>
<td>Cross-section area of downspouts pipe (2)</td>
</tr>
<tr>
<td>A_3</td>
<td>Cross-section area of main downspouts pipe</td>
</tr>
<tr>
<td>A_{roof}</td>
<td>Catchment surface footprint area</td>
</tr>
<tr>
<td>COP</td>
<td>Air-condition unit coefficient of performance</td>
</tr>
<tr>
<td>CR</td>
<td>Run of coefficients</td>
</tr>
<tr>
<td>$D_{(0.85)}$</td>
<td>The deference $(WT - W_{(0.85)})$</td>
</tr>
<tr>
<td>$D_{(0.95)}$</td>
<td>The deference $(WT - W_{(0.95)})$</td>
</tr>
<tr>
<td>H</td>
<td>Water level height in the tank</td>
</tr>
<tr>
<td>H</td>
<td>Pump head</td>
</tr>
<tr>
<td>HP</td>
<td>Pump Hours power</td>
</tr>
<tr>
<td>L_{max}</td>
<td>Maximum pipe length</td>
</tr>
<tr>
<td>L_{min}</td>
<td>Minimum pipe length</td>
</tr>
<tr>
<td>m_1</td>
<td>Water mass flow rate through downspouts (1)</td>
</tr>
<tr>
<td>m_2</td>
<td>Water mass flow rate through downspouts (2)</td>
</tr>
<tr>
<td>m_3</td>
<td>Water mass flow rate through main downspouts</td>
</tr>
<tr>
<td>Q</td>
<td>Pump Water flow</td>
</tr>
<tr>
<td>Q</td>
<td>Heat transfer rate</td>
</tr>
</tbody>
</table>
Q_{cooling} - The removed heat by air-condition unit

R_0 - Overall thermal resistance

TD - Temperature difference

T_{H} - High temperature (roof)

T_{L} - Low temperature (room)

U - Overall heat transfer coefficient

V - Water volume (liter)

V_{1} - Tank Rectangular part volume

V_{2} - Tank parabolic part volume

W_{(0.85)} - Calculated Harvested rainwater when (CR = 0.85)

W_{(0.95)} - Calculated Harvested rainwater when (CR = 0.95)

W_{cooling} - The energy consumption by the air-condition unit

W_{Harvested} - Harvested rainwater in liters

W_{Rainfall} - Rainfall amount in mm

W_{T} - Harvested rainwater amount in the tank

Y - Parabolic width on the water level
CHAPTER 1

INTRODUCTION

1.1 Introduction

The never-ending exchange of water from the atmosphere to land and the oceans and back again is known as the hydrologic cycle. All forms of precipitation (hail, rain, sleet, and snow), and consequently all movement of water in nature, forms part of this cycle. Precipitation stored in streams, lakes and in soil evaporates while water stored in plants transpires to store of water in the atmosphere. When the atmospheric conditions reach a level of super saturation, a stat achieved as a result of increased humidity combined with changes in temperature and pressure, this water is released in the form of rain, sleet, snow or hail, which falls as a result of the force of gravity to the earth. The cycle continues, and results in shifting water from sea level all the way into the mountains and back into rivers, lakes and the sea etc.

Rainwater harvesting is the collection and storage of rainwater from roofs or catchment surface for future use. The collected water is stored in tanks for future use. The usage way (water distribution) is depending on the rainwater applications. Did you know that although 70% of the earth is covered with water, only 3% of this water is fresh water? Out of this, 2% is locked in the form of ice, and it is only the balance 1% of water that recycles through the evaporation, condensation cycle, that flows into the rivers and lakes, to be used mankind [1]. So, the aim of this technique is to collect fresh water (rainwater) to improve the mankind uses especially in dry regions. Rainwater is
valued for its purity and softness. It has a nearly neutral pH, and is free from
disinfection by-products, salts, minerals, and other natural and man-made contaminants
accept the development area (acid rain). If the rain fall persists for long time only the
fist part of rain will be bulleted.

1.1.1 Brief history

Collecting and storing rainwater is not a new idea. While the origin of rainwater
catchments systems are not known precisely, historical evidence suggests structures for
holding runoff water date back to the third millennium BC[2]. Historical structures
range from saucer like ground catchments and below ground cisterns to above ground
rooftop runoff storage tanks, have been found in numerous locations in Middle Eastern,
Asian and Mediterranean countries as Negev desert, India, Greece, Italy, Egypt, Turkey and China. It is found in Mexico, Taxes and Arizona as well. Historically,
harvested rainwater provided water for daily life use as drinking, cooking, washing and
landscape watering. Once urban areas started to develop, centralized water supply
systems replaced the need to harvest water [3].

1.1.2 Cooling energy consumption

The main contributor to increasing atmospheric carbon dioxide (CO₂)
concentration is the combustion of fossil fuels from electricity generation, commercial
and domestic uses. The demand for energy is expected to grow rapidly in developed
countries as well as in the developing countries as they attempt to obtain a higher
standard living. This increase energy demand and consequently increase carbon dioxide
concentration in the atmosphere.
As energy costs rise, and the public becomes more aware of the environmental damage arising from current energy use patterns. In most of hot just as much energy, if not more, may be used for cooling to achieve the thermal comfort. Refrigeration and air conditioning systems have a major impact on energy demand with roughly 30% of total energy consumption in the world [4]. With fossil fuels fast depleting, it is imperative to look for refrigeration systems that require less high-grade energy for their operation. A minimum amount of energy should be use for cooling.

Typically, air-conditioning accounts for 60% of electricity consumption in commercial buildings in the hot and humid Southeast Asian Region [5]. Residential households in urban and suburban areas use air-conditioning for thermal comfort increasingly. Typically, one air-conditioner will be initially installed in the main bedroom of a house. With increase in disposable income, a household would add second, third and possibly more units to other bedrooms and common rooms. There is increasing penetration of air-conditioning, both in terms of number of households and in terms of number of air-conditioners per households, that the air-conditioning industry reports increasing annual number of units sold that approaches 5% of the number of households in Malaysia and Thailand. When air-conditioning is used, it contributes 70% of electricity consumption in a household [5]. Alternative methods, using passive cooling techniques, can assist in reducing the conventional energy consumption in buildings. Researchers have shown that about 50% of the heat gains for a single-story building come through the roof [6]. The conventional approaches to reduce heat flux through the roof into a building include increasing thickness of the roof, providing insulation and false ceilings, shading the roof and using reflective finish or coating. In hot dry areas, however, this can be achieved by an open pond, thin water film and spraying water on the roof [7]. The passive cooling is a feasible technology that can reduce mechanical cooling and energy requirement in air conditioning application that will effect to decrease emissions from electricity generation.
1.2 Problem Statement

Malaysia is a tropical region (hot, humidity and raining weather). Rainwater harvesting can be a supplementary water source for residential dwelling. The study will predict how much rainwater can be harvested. Also, it will show whether the harvested rainwater will be partial coverage of the water requirements of daily usage (drinking, cooking, shower, washing, toilet flush, washing front yard, watering plants and washing cars ... etc), during whole of the year, or it will be full coverage. The harvesting of rainwater can be used for passive cooling technique (spray water on the roof) to reach the thermal comfort.

1.3 Aim and Objectives of Study

An overall goal of this study is to meet water demand for residential dwelling. The study will show how much the harvested rainwater will reduce the usage of the public water supply. In other words, how much the water bill can be reduced? On the other hand, by using the harvesting rainwater for passive cooling technique (spray water on the roof), well decrease the cooling electrical energy (air-condition) to reach the thermal comfort.

The objectives of this study by using case study of rainwater harvesting system and passive cooling technique (spray water on the roof) as the following:

1. Fundamental study of rainwater systems used for rain harvesting.

2. To Acquit observables facts in implementing rainwater harvesting techniques with residential dwellings.

3- To find out the performance passive cooling technique (spraying water on the roof).
REFERENCES

