EFFECT OF SURFACE PRETREATMENTS ON THE DEPOSITION OF POLYCRYSTALLINE DIAMOND ON SILICON NITRIDE SUBSTRATES USING HOT FILAMENT CHEMICAL VAPOR DEPOSITION METHOD

DAYANGKU NOORFAZIDAH BINTI AWANG SH'RI

UNIVERSITI TEKNOLOGI MALAYSIA

EFFECT OF SURFACE PRETREATMENTS ON THE DEPOSITION OF POLYCRYSTALLINE DIAMOND ON SILICON NITRIDE SUBSTRATES USING HOT FILAMENT CHEMICAL VAPOR DEPOSITION METHOD

DAYANGKU NOORFAZIDAH BINTI AWANG SH'RI

UNIVERSITI TEKNOLOGI MALAYSIA

EFFECT OF SURFACE PRETREATMENTS ON THE DEPOSITION OF POLYCRYSTALLINE DIAMOND ON SILICON NITRIDE SUBSTRATES USING HOT FILAMENT CHEMICAL VAPOR DEPOSITION METHOD

DAYANGKU NOORFAZIDAH BINTI AWANG SH'RI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical-Materials)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY 2009

ACKNOWLEDGEMENTS

All praise to Allah s.w.t who taught the mankind what they did not know. My prayers for my beloved parents, Hj Awang Sh'ri and Hajah Aishah Abdullah who gave countless sacrifice and did every effort in order to nurture me and provided the highest moral values.

I am extremely grateful to Professor Dr. Esah Hamzah for her kindly but rigorous insight gave me the motivation to finish this thesis.

I am also thankful to all technicians in Material and Manufacturing Laboratory for providing the technical support needed to complete this work. I feel obliged to express my gratitude towards my course mates for supporting me to complete this study. I also would like to thanks everyone that contributes directly and indirectly toward the completion of this study.

Finally, a particular debt of gratitude is due to my beloved late husband, Allahyarham Heimy Syariffyzal bin Abdul Samat, who helped me at every step of this work. He always exhibited an extreme degree of love, understanding, sacrifice, compassion and encouragement for me; otherwise I would never been able to complete this thesis. His presence in my life will sadly be missed but he will always be remembered in my prayer.

ABSTRACT

The deposition of diamond films on a silicon nitride (Si₃N₄) substrate is an attractive technique for industrial applications because of the excellent properties of diamond. Diamond possesses remarkable physical and mechanical properties such as chemical resistant, extreme hardness and highly wears resistant. Pretreatment of substrate is very important prior to diamond deposition to promote nucleation and adhesion between coating and substrate. Polycrystalline diamonds films have been deposited on silicon nitride substrate by Hot Filament Chemical Vapor Deposition (HF-CVD) method. The Si₃N₄ substrates have been subjected to various pretreatment methods prior to diamond deposition namely chemical etching and mechanical abrasion. The structure and morphology of diamond coating have been studied using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) while diamond film quality has been characterized using Raman spectroscopy. The adhesion of diamond films has been determined qualitatively by using Vickers hardness tester. It was found that the diamond films formed on chemical pretreated substrates has cauliflower morphology and low adhesive strength but also have low surface roughness. Substrates that pretreated with sand blasting have yield diamond film with well-facetted morphology with high crystallinity and better adhesion. However, the surface roughness of the diamond film deposited on substrates pretreated with blasting are also higher.

ABSTRAK

Endapan filem intan diatas substrat silikon nitrid (Si_3N_4) merupakan satu teknik yang menarik kepada applikasi industri kerana sifat intan yang cemerlang. Intan memiliki sifat fizikal dan mekanikal yang menakjubkan seperti kalis bahan kimia, kekerasan yang tinggi dan sangat kalis haus. Pra-penyediaan substrat sebelum endapan intan adalah sangat penting untuk menggalakkan pertubuhan nuklei dan meningkatkan rekatan diantara salutan dan substrat. Filem intan polihablur telah diendapkan diatas substrat silikon nitrid menggunakan kaedah endapan wap kimia filamen panas. Substrat Si₃N₄ telah melalui pelbagai kaedah pra-penyediaan sebelum endapan intan seperti punaran kimia dan lelasan mekanikal. Struktur dan bentuk salutan intan yang terhasil telah dikaji menggunakan pembelauan sinar X-ray (XRD) dan mikroskop electron imbasan (SEM) manakala kualiti filem intan telah dikaji menggunakan spektroskopi Raman. Rekatan filem intan telah dikaji secara kualitatif menggunakan ujian kekerasan Vickers. Hasil kajian menunjukkan filem intan yang terbentuk di atas substrate yang melalui pra-penyediaan kimia mempunyai morfologi cauliflower dan kekuatan rekatan yang rendah tetapi mempunyai kekasaran permukaan yang rendah. Substrat yang dibagas dengan pasir menghasilkan filem intan yang mempunyai segi permata dengan kehabluran yang tinggi dan kerekatan yang lebih bagus. Akan tetapi, kekarasan permukaan filem intan yang diendap diatas substrat yang dibagas dengan pasir juga lebih tinggi.

TABLE OF CONTENTS

TITLE

CHAPTER

1

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF APPENDICES	xvii
INTRODUCTION	1
1.1 Reckground of the research	1

1.1	Background of the research	1
1.2	Problem Statement	2
1.3	Objectives and Scopes of Study	3
1.4	Significance of the Study	4

PAGE

LITERATURE REVIEW - ELECTRONIC PACKAGING 4 2 LITERATURE REVIEW 4 2.1 Introduction 4 2.2 An Overview on Cutting Tools 4 2.2.1 **Cutting Tool Materials** 5 5 2.2.1.1 High Speed Steel 2.2.1.2 Carbide 2.2.1.3 Alumina based ceramic tools 6 2.2.1.4 Cubic Boron Nitride 7 2.2.1.5 Silicon Nitride based ceramic 7 2.2.2.2 **Diamond coatings** 8 Overview of Diamond as Coating Material 8 2.3 2.3.1 8 Structures and properties of diamond 13 2.3.2 Deposition Mechanism of Polycrystalline CVD diamond Nucleation and Growth of CVD diamond 15 2.3.2.1 2.3.3 Polycrystalline diamond deposition of various 20 substrates 2.3.3.1 Deposition on cemented tungsten carbide 20 21 2.3.3.2 Deposition on silicon nitride 2.3.4 Surface pretreatment 22 2.4 Deposition technique of polycrystalline diamond 25 2.4.1Introduction 25 2.4.2 Operating principle of CVD 25 2.4.3 CVD diamond deposition techniques 26 2.4.3.2 Arc-Discharge 26 27 2.4.3.3. Microwave plasma-assisted CVD 2.4.3.1 Hot Filament CVD 28 2.5 Conclusion 32 **RESEARCH METHODOLOGY** 33 3.1 33 Introduction 3.2 Sample preparation and Pretreatment 34 3.2.1 **Substrates Material** 34

2

	3.2.2	Substrate Pretreatments	36
	3.2.3	Surface Roughness	39
3.3	Polycr	ystalline Diamond Deposition by Hot Filament	
	Chem	ical Vapor Deposition Technique	40
3.4	Micro	structural Characterization	42
	3.4.1	Surface Morphology and Thickness by Scanning	
	Electro	on Microscopy	42
	3.4.2	Surface Topography and Surface Roughness by	
	Atomi	c Force Microscopy	43
	3.4.3	X Ray Diffraction	43
	3.4.4	Diamond Quality and Residual Stress by Raman	
	Spectr	roscopy	45
3.5	Adhes	ion properties by Vickers hardness tester	46

RESU	LTS AND DISCUSSION	48
4.1	Materials	48
	4.1.1 Composition and Phase Analysis	48
	4.1.2 Hardness Analysis	50
4.2	Pretreatment Analysis	50
	4.2.1 Effect of pretreatment on surface roughness	and
	morphology	50
	4.2.1.1 Substrates morphology after pretreatment	50
	4.2.1.2 Effect of seeding on diamond nucleation	57
4.3	Effect of chemical etching	61
	4.3.1 Introduction	61
	4.3.2 Effect of etching time on the morphology of	the
	diamond film	61
	4.3.3 Surface topography and surface roughness by ato	mic
	force microscopy (AFM)	65
	4.3.4 Phase analysis using X-ray diffraction	71
	4.3.5 Diamond quality analysis using Raman spectra	74
4.4	Effect of Mechanical pretreatment	80
	4.4.1 Introduction	80

		4.4.2	Effect of etching time on the morphology of	the
		diamo	nd film	80
		4.4.3	Surface topography and surface roughness by atc	omic
		force r	nicroscopy (AFM)	81
		4.4.4	Phase analysis and quality of diamond using X	-ray
		diffrac	tion	82
	4.5	Adhesi	on analysis of diamond film deposited on var	ious
	pretrea	ated sub	strates.	85
		4.5.1	Introduction	85
		4.5.2	Adhesion behavior due to different indentation load	ls85
		4.5.3	Determination of adhesive strength	91
			4.5.3.1 Adhesive strength determination based	on
			radial crack	91
			4.5.3.2 Adhesive strength determination based	on
			delamination radius	94
		4.5.4	Surface roughness with adhesion	96
		4.5.5	Adhesive strength relate with sp ² /sp ³ ratio	98
5	CONO	CLUSI	ONS AND RECOMMENDATIONS	99
	5.1	Conclu	isions	100
	5.2	Recom	mendations for Future Works	100
REFERENC	ES			101

APPENDICES

5

LIST OF TABLES

TABLE NO.

TITLE

PAGE

Table 2.1	General properties of common cutting tool materials [4]	6
Table 2.2	Comparison between typical properties of various categories	of
	diamond [6, 10, 11]	14
Table 2.3	Surface pretreatment for silicon nitride substrate	25
Table 2.4	Characteristics of Diamond Deposition Processes [11]	27
Table 2.5	Deposition parameter of HFCVD on Si_3N_4 and WC-Co substrate	31
Table 3.1	Chemical Treatment of Si3N4 substrates	37
Table 3.2	As-received and mechanically treated sample	38
Table 3.3	Seeding process for pretreated substrates	38
Table 3.4	HFCVD deposition parameter	40
Table 4. 1	Summary of SEM and AFM evaluation for diamond film deposited	l on
	substrates pretreated with chemical etching	70
Table 4.2	Summary of XRD and Raman Spectroscopy characterization on	
	diamond deposited on substrates pretreated with chemical etching	79
Table 4. 3	Summary of SEM and AFM evaluation for diamond film deposited	l on
	as received and substrates pretreated with mechanical etching	83
Table 4. 4	Summary of XRD and Raman Spectroscopy characterization on	
	diamond deposited on as received and substrates pretreated with	
	mechanical etching	84
Table 4.5	Delamination radius of various samples under various indentation	
	load	95

LIST OF FIGURES

. TITLE	PAGE
Schematic diagram of crystal structure of hexagonal graphite	11
Schematic diagrams of two basic crystal structures of di	amond:
hexagonal lonsdaleite and cubic diamond	11
Schematic of unit cell of cubic diamond	12
Schematic of the simple crystals shape of diamonds	13
Idiomorphic crystal shapes of diamond for different values	of the
growth parameter, α.	13
Generalized schematic of the physical and chemical process or	curring
in CVD diamond reactor	16
Simplified form of the Bachmann triangle C-H-O comp	position
diagram in which below CO tie-line, no film growth will	occur.
Above the CO tie-line, non-diamond carbon is deposited exce	ept in a
narrow window close to the tie-line which produces polycry	stalline
diamond films	17
Free energy diagram of three dimensional crystal formation	G3D)
at constant supersturation $\Delta\!$	of its
particle, n. [13]	18
Schematic of the reaction process occurring at the diamond	surface
leading to stepwise addition of CH_3 species and diamond growtheta and diamond growth	th 20
Growth process of a diamond film on a non-diamond substra	tes: (a)
nucleation of individual crystallites (b-c) termination of nuc	leation,
and growth of indicidual crystallite (d) faceting and coalesc	ence of
individual crystallites and formation of continuous film (e-f	f) some
	Schematic diagram of crystal structure of hexagonal graphite Schematic diagrams of two basic crystal structures of di hexagonal lonsdaleite and cubic diamond Schematic of unit cell of cubic diamond Schematic of the simple crystals shape of diamonds Idiomorphic crystal shapes of diamond for different values growth parameter, α . Generalized schematic of the physical and chemical process of in CVD diamond reactor Simplified form of the Bachmann triangle C-H-O comp diagram in which below CO tie-line, no film growth will Above the CO tie-line, non-diamond carbon is deposited exce narrow window close to the tie-line which produces polycry diamond films Free energy diagram of three dimensional crystal formation at constant supersturation $\Delta \mu$) as a function of the number particle, n. [13] Schematic of the reaction process occurring at the diamond leading to stepwise addition of CH ₃ species and diamond growt Growth process of a diamond film on a non-diamond substra nucleation of individual crystallites (b-c) termination of nuc and growth of indicidual crystallite (d) faceting and coalesce individual crystallites and formation of continuous film (e-f

crystals grow faster and swallow their neighbours during growth of continuous film [6]. 21

- Figure 2.11 Schematic of arc-discharge apparatus for the deposition of diamond28
- Figure 2.12 Schematic of microwave-plasma deposition 29
- Figure 2.13 Hot Filament Apparatus for deposition of diamond 30
- Figure 2.14 Schematic diagram showing the mechanisms of diamond nucleation enhancement on biases substrate. (a) Negative biasing: carbon containing cations are accelerated toward the substrate surface. (b) Positive biasing: electrons are accelerated toward the substrate surface and bombard carbon-containing molecules adsorbed on the surfaces [6]. 32
- Figure 3.1 Experimental Flow Chart 35
- Figure 3.2Ultrasonic cleaner used to clean the sample36
- Figure 3.3 Schematic of a profilometer used to determine the surface roughness of the materials
 Figure 3.4 Hot filament chemical vapor deposition (a) actual equipment and (b)
- schematic drawing of HFCVD equipment. 41
- Figure 3.5 HFCVD chamber configuration showing (a) front view and (b) side view. 41
- Figure 3.6 Scanning Electron Microscopy used to investigate the morphology of deposited polycrystalline diamond 42
- Figure 3.7 Atomic Force Microscopy used for topography and surface roughness analysis 43
- Figure 3.8Bragg's Law explaining the diffraction of crystals44Figure 3.9X-Ray Diffractometer (XRD) used to determine composition and
- phase analysis of the coating44Figure 3.10Raman Spectroscopy Equipment46
- Figure 3.11 Vickers Hardness Tester indenter (a) actual equipment and (b) schematic of hardness measurement 47
- Figure 4.1 (a) As-received Si_3N_4 substrates and (b) optical micrograph of Si_3N_4 (x200) 48
- Figure 4.2EDX spectrum of Si_3N_4 49Figure 4.3XRD spectrum of as-received Si_3N_4 49
- Figure 4.4 Vickers indentation on Si₃N₄

Figure 4.5	FE-SEM micrograph of substrates surface due to (a) acid etching	, (b)
	strong acid etching and (c) basic etching.	52
Figure 4.6	AFM image analysis showing (a) top view and (b) 3-dimensi	onal
	view of substrates undergoes strong acid etching for 20 minutes.	52
Figure 4.7	Mechanism of wet chemical etching	53
Figure 4.8	AFM images of surface topography of Si3N4 substrate pretreated	d by
	sand blasting.	54
Figure 4.9	Schematic diagram of blasting mechanism	55
Figure 4.10	AFM images of surface topography of Si3N4 substrate pretreate	d by
	grinding process	55
Figure 4.11	Schematic diagram of grinding mechanism	56
Figure 4.12	Surface roughness (Ra) before and after surface pretreatment	57
Figure 4.13	Diamond nucleation on substrates pretreated with (a) acid etching	g (b)
	strong acid etching and (c) basic etching	58
Figure 4.14	Diamond nucleation on non-seeded, (a) as-received (b) pretreated	d by
	blasting and (c) pretreated by grinding substrates.	59
Figure 4. 15	Schematic diagram of mechanisms for diamond nuclea	ition
	enhancement of scratched substrates [7]	60
Figure 4.16	SEM micrograph of Vickers indentation on Si3N4 substr	rates
	pretreated by grinding on (a) seeded and (b) unseeded sample.	60
Figure 4.17	SEM showing diamond film deposited on substrate pretreated	with
	acid etching for (a) 10 (b) 20 and (c) 30 minutes.	62
Figure 4.18	SEM showing diamond film deposited on substrate pretreated	with
	strong acid etching for (a) 10 (b) 20 and (c) 30 minutes.	63
Figure 4.19	SEM showing diamond film deposited on substrate pretreated	with
	basic etching for (a) 10 (b) 20 and (c) 30 minutes.	63
Figure 4.20	Schematic of ballas-like particle growth suggesting preferential <1	10>
	orientation during NCD film deposition [10].	64
Figure 4.21	AFM 3D topography of diamond film deposited on acid et	ched
	substrates for (a) 10 (b) 20 and (c) 30 minutes.	65
Figure 4.22	AFM 3D topography of diamond film deposited on strong acid et	ched
	substrates for (a) 10 (b) 20 and (c) 30 minutes.	66
Figure 4. 23	AFM 3D topography of diamond film deposited on basic etc	ched
	substrates for (a) 10 (b) 20 and (c) 30 minutes.	67

- Figure 4. 24 AFM profile of diamond film deposited on acid etched substrates showing (a) highly facetted crystalline morphology and (b) cauliflower morphology 68
- Figure 4.25X-ray diffraction pattern of diamond film deposited on acid etched
substrates for (a) 10 (b) 20 and (c) 30 minutes72
- Figure 4.26X-ray diffraction pattern of diamond film deposited on strong acid
etched substrates for (a) 10 (b) 20 and (c) 30 minutes73
- Figure 4.27X-ray diffraction pattern of diamond film deposited on basic etched
substrates for (a) 10 (b) 20 and (c) 30 minutes73
- Figure 4.28Raman spectra comparison between substrates pretreated in acid
etching for (a) 10 (b) 20 and (c) 30 minutes.75
- Figure 4.29Raman spectra comparison between substrates pretreated in strong
acid etching for (a) 10 (b) 20 and (c) 30 minutes.76
- Figure 4.30Raman spectra comparison between substrates pretreated in basic
etching for (a) 10 (b) 20 and (c) 30 minutes.76
- Figure 4.31 Fe-SEM micrograph of diamond film deposited on (a) as-received (b) pretreated by blasting and (c) pretreated by grinding substrates. 80
- Figure 4.32 3D topography of diamond film deposited on (a) as-received (b)pretreated by blasting and (c) pretreated by grinding substrates. 81
- Figure 4.33 XRD peaks comparison of diamond film deposited on as-received, pretreated by blasting and pretreated by grinding substrates. 82
- Figure 4.34Raman spectra of diamond film deposited on as-received, pretreated
by blasting and pretreated by grinding substrates.82
- Figure 4.35 Vickers indent on the diamond film at load 5kgf, 10kgf and 30kgf, respectively on sample treated with acid etching for 20 minutes. 86
- Figure 4.36 SEM images of Vickers indent on acid etched pretreated samples 87
- Figure 4. 37 SEM images of Vickers indent on strong acid etched pretreated samples 88
- Figure 4.38 SEM images of Vickers indent on basic etched pretreated samples 89
- Figure 4.39 SEM images of Vickers indent on as-received and mechanically pretreated substrates 90
- Figure 4.40Indentation load versus crack length curves for diamond films with
different surface pretreatment92

Figure 4.41	Adhesive strength of diamond film deposited on various sur	rface		
	pretreated substrates	92		
Figure 4.42	Crack response of diamond deposited on (a) basic etched and	1 (b)		
	pretreatment by blasting to Vickers indentation	93		
Figure 4.43	Typical crack response of diamond film due to Vickers indentation			
	observed under optical microscopy.	94		
Figure 4.44	Plot of delamination radius versus load for strong acid pretreated			
	substrates	95		
Figure 4.45	Adhesive strength of diamond films.	96		
Figure 4.46	Relationship between surface roughness of diamond film	and		
	adhesive strength	97		
Figure 4.47	Relationship between adhesion strength and sp2/sp3 ratio of dian	nond		
	film	98		

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	Abstract accepted for International Conference on A	dvances in
	Mechanical Engineering 2009-(ICAME 2009), 24-25 J	une 2009,
	Shah Alam, Malaysia.	108
A2	Abstract accepted for Advances in Materials and	Processing
	Technologies (AMPT) 2009 (AMPT 2009), 26 - 29 Oc	tober 2009,
	Kuala Lumpur, Malaysia.	109

CHAPTER 1

INTRODUCTION

1.1 Background of the research

Apart from their appeal as highly treasured gemstones, diamond possesses a remarkable physical properties such as extreme hardness, high thermal conductivities, excellent infrared transparency and remarkable semiconductor properties making diamond one of technologically valuable materials. However, it has proved very difficult to exploit these properties, due to the cost and scarcity of large natural diamond.

Many attempts have been made to synthesize diamond artificially using graphite as starting material. This proved very difficult, mainly because at room temperature and atmospheric pressure, graphite is the thermodynamically stable allotrope of carbon. Although the standard enthalpies of diamond and graphite are differ only by 2.9 kJ mol⁻¹, a large activation barrier separates the two phases preventing interconversion between them at room temperature [1]. To overcome these problem, high pressure high temperature (HPHT) growth techniques has been introduced by General Electric to produce industrial diamond. However, the drawback of HPHT method is that it still produces diamond in form of single crystal thus limiting the range of application it can be used.

This leads to the idea of producing diamond from gas phase at much lower pressure in which carbon atoms could be added one-at-a-time to an initial template, in such a way tetrahedrally bonded carbon network forms. It can be achieved by using chemical vapor deposition (CVD) method. CVD involves a gas phase chemical reaction occurring above solid surfaces, which causes deposition onto that surface. All CVD techniques for producing diamond film require a mean of activating gas-phase carboncontaining precursor molecules[2]. This gas phase activation is achieved typically by using one of these three basic methods:

- External heating (as in hot filament CVD)
- Plasma activation (as in Plasma assisted CVD)
- A combination of thermal and chemical activation (as in flame CVD)

The applications for which CVD diamond films can be used are closely related to the various extreme physical properties they exhibit. The extreme hardness and high wear resistance of the diamond makes it an ideal candidate for use as coating material in cutting tool.

1.2 Problem Statement

Diamond coating have a great application as wear resistant layers on tools. Such diamond-coated hard metal and ceramic inserts are used successfully in machining fiberreinforced plastic, graphites and aluminium alloys. However, in order for CVD diamond to be used as coating for tools and wear parts, it has been shown that two problem must be overcome first The problems are the diffusion of atoms from the substrate to the diamond and diffusion of carbon atoms to the substrate, and also the adhesion and residual stress in interlayer of diamond coating [3]. Poor adhesion can be caused by many factors such as mismatch of coefficient of thermal expansion (CTE) between diamond and substrate, residual stress, impurities and others.

1.3 Objectives and Scopes of Study

The objectives of this study are to study the effect of substrate surface treatment on morphology, coating adhesion, surface roughness and residual stress of polycrystalline diamond coated on silicon nitride. Surface treatment of the substrate is very important in order to produce high quality diamond coating with high adhesion strength.

The scope of the research includes:

a) Polycrystalline diamond deposited on silicon nitride substrate using Hot Filament Chemical Vapor Deposition machine using 99% CH₄ gas as precursor.

b) Prior to diamond deposition, the substrate undergoes various surface pretreatment processes as following:

- i. The surface was blasted with SiC 180 for 30 sec (mechanical pretreatment)
- ii. The surface was grinded with 180 grit for 5 minutes followed by 600 grit for 5 minutes (mechanical pretreatment)
- iii. The surface was etched with various chemical reagents (chemical etchings)

c) Characterization on microstructure, morphologies and mechanical properties using scanning electron microscopy, atomic force microscopy, Raman Spectroscopy, Xray diffraction and Vickers hardness indenter

1.4 Significance of the Study

In an effort to enhance diamond nucleation and to control film growth morphology, the effect of surface conditions on nucleation processes will be investigated to select the optimum surface pretreatment method. The chemical properties and surface conditions of substrate materials critically influence surface nucleation processes of diamond in CVD. Thus, based on the output of this study, optimum surface treatment technique and deposition parameter will be determined to produce goof quality polycrystalline diamond coating.