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ABSTRACT

Ground Penetrating Radar (GPR) is a non-destructive, full-wave 
electromagnetic (EM) measurement tool for quantitative imaging to describe dielectric 
permeability distributions. It is an efficient technique for detecting diesel 
contamination in soil tomography problems. However, dielectric permittivity relies 
entirely on variance moisture content facilitated by diesel fuel reaction soil, which 
determines GPR velocity. Difficulties in interpreting GPR reflection configuration are 
complex qualitative features limited to noisy or nonlinear relations problems. 
Consequently, positioning and depth determination would be misleading due to severe 
polarization and velocity mismatch in traveling-wave typically in Terap Red soil as 
silty-clay soil. Therefore, this study aims to determine the mathematical model for 
dielectric permittivity prediction and investigate the GPR signal segmentation 
algorithm model to map the diesel contamination plume in Terap Red soil. The 
calibration icon function of the GPR signal was quantified by dielectric permittivity 
prediction. The research approach was divided into 4 phases. The investigation 
commenced with an evaluation of the GPR propagation signal from a simulated diesel 
contamination plume of Terap Red and sandy soils concerning the results of 
geotechnical measurements using BS 1337: 1992. Next, the dielectric permittivity 
using the GPR velocity in modeling the empirical relationship between dielectric 
permittivity and moisture content was determined using statistical analysis. 
Additionally, cross-validation was performed using existing literature, Vector 
Network Analyzer (VNA) and in-situ measurements before the GPR signal images 
were segmented and categorized using a Support Vector Machine (SVM). Finally, ten
fold cross-validation and Logistic Regression (LR) classification were used to evaluate 
the spatial distribution classification mapping of GPR signals. The result shows the 
best prediction on Terap Red soil from third-order polynomial using ANOVA yielded 
a strong positive correlation (R2=0.9892, N=24, P <0.05) and a standard error of 0.076. 
The accuracy of dielectric permittivity in terms of root mean square error (RMSE) and 
mean absolute error (MAE) was obtained at 9.772E-14 and 0.049, respectively. The 
best-fitting relationship does exhibit some degree of textural bias that should be 
considered in the choice of petrophysical relationship with uncertainty mean 
differences via VNA validation for Terap Red and sandy soil were only 2.706 % and 
1.985 %, compared to over 3.608% and 15.990 % for the existing model. The accuracy 
of the spatial distribution classification map generated by the SVM classifier is 
encouraging, with RMSE of 0.139, kappa statistics of 0.888, and correct instances 
classified (CIC) of nearly 100 % for both SVM and LR. In conclusion, the study results 
on dielectric permittivity prediction of contaminated soils for Terap Red and sandy 
soils indicate that the empirical relationship model is only applicable to specific soils 
with similar properties. Additional supervised data is recommended to achieve better 
classification outputs.
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ABSTRAK

Radar Penembusan Tanah (GPR) adalah alat pengukuran tanpa kerosakan, 
pengukurannya berasaskan gelombang elektromagnetik gelombang penuh (EM) untuk 
pencitraan kuantitatif bagi menerangkan taburan ketelusan dielektrik dan teknik yang 
cekap mengesan pencemaran diesel dalam masalah tomografi tanah. Walau 
bagaimanapun, ketelusan dielektrik bergantung sepenuhnya pada kepelbagaian 
kelembapan yang didorong oleh tanah reaksi bahan bakar diesel, yang mana digunakan 
untuk menentukan halaju GPR. Penafsiran konfigurasi refleksi GPR adalah sukar 
kerana ciri kualitatif yang kompleks, yang mana terhad kepada masalah hingar atau 
hubungan tidak linear. Oleh sebab itu, kesilapan penentuan kedudukan dan kedalaman 
mungkin berlaku disebabkan polarisasi yang teruk dan ketidaksepadan halaju dalam 
perjalanan-gelombang terutama pada tanah Terap Red sebagai tanah halus-liat. Maka, 
kajian ini bertujuan untuk menentukan model matematik untuk meramal permitiviti 
dielektrik dan menyiasat model algoritma bagi segmentasi isyarat GPR untuk 
memetakan kosentrasi pencemaran diesel di tanah Terap Red. Ramalan permitiviti 
dielektrik telah digunakan sebagai fungsi penentukuran isyarat GPR. Pendekatan 
kajian dibahagikan kepada empat (4) fasa. Penyiasatan dimulakan dengan penilaian 
isyarat penyebaran GPR daripada simulasi pencemaran diesel tanah Terap Red dan 
tanah berpasir berhubung dengan keputusan pengukuran geoteknikal menggunakan 
BS 1337: 1992. Seterusnya, penentuan ketelusan dielektrik menggunakan halaju GPR 
dalam memodelkan hubungan empirikal antara ketelusan dielektrik dan kandungan 
lembapan menggunakan instrumen analisis statistik. Selain itu, pengesahan silang 
dilakukan menggunakan literatur sedia ada, Penganalisis Rangkaian Vektor (VNA) 
dan pengukuran di tapak sebelum imej isyarat GPR disegmenkan dan dikategorikan 
menggunakan Mesin Vektor Sokongan (SVM). Pengesahan 10 kali ganda dan 
pengelasan Regresi Logistik (LR) telah digunakan untuk menilai pemetaaan klasifikasi 
taburan spatial isyarat GPR. Keputusan menunjukkan ramalan terbaik pada tanah 
Terap Red daripada polinomial tertib ketiga menggunakan ANOVA menghasilkan 
korelasi positif yang kuat (R2 = 0.9892, N = 24, P <0.05) dan ralat piawai 0.076. 
Ketepatan permitiviti dielektrik dari segi ralat punca min punca (RMSE) dan ralat 
mutlak min (MAE) diperoleh masing-masing pada 9.772E-14 dan 0.049. Hubungan 
model yang paling sesuai menunjukkan tahap kecenderungan tekstur harus 
dipertimbangkan dalam memilih hubungan petrofisik melalui perbezaan min 
ketidaktentuan daripada pengesahan VNA untuk tanah Terap Red dan berpasir hanya 
2.706% dan 1.985%, berbanding melebihi 3.608% dan 15.990% untuk model sedia 
ada. Ketepatan peta klasifikasi taburan spatial menggunakan pengelas SVM adalah 
memberangsangkan, dengan RMSE, 0.139, statistik kappa, 0.885 dan Perkelasan 
Contoh Betul (CIC) pada kadar hampir 100% untuk kedua-dua SVM dan LR. 
Kesimpulannya, hasil kajian ramalan kebolehtelapan dielektrik bagi tanah tercemar 
bagi tanah Terap Red dan berpasir menunjukkan bahawa model hubungan empirikal 
hanya terpakai untuk tanah tertentu dengan ciri-ciri yang sama. Data diselia tambahan 
yang lebih banyak disarankan untuk mencapai hasil kejituan klasifikasi yang lebih baik
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Diesel fuel which is part of hydrocarbon, is a distilled fuel oil used in motor 

vehicles and electricity generation derived from crude oil and biomass composites 

(Gad, 2014; Latif et al., 2021). Diesel fuel contains sulfur, which can induce 

carcinogenic air pollution emissions in humans, according to the International Agency 

for Research on Cancer (IARC), obtained by Gad (2014) and Mueller et al. (2021). 

Carcinogenic substances are chemicals or chemical mixtures that have the potential to 

cause cancer in humans (Hentz, 2010; Mueller et al., 2021). Several studies, including 

Mustafa et al. (2020) and Mueller et al. (2021), have associated diesel exhaust particles 

(DEPs), a key element of atmospheric particulate matter <2.5p,m (PM2.5), as a 

mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) risk, 

which tends to increase inflammation and severe lung damage as shown in Figure 1.1. 

In summary, contamination of diesel fine Particle Matter 2.5 (dPM2.5) provides an 

appropriate medium for keeping” and carrying” the SARS-CoV-2 during respiratory 

air transportation, as illustrated in Figure 1.1. Figure 1.1 also depicts multiple routes 

of virus replication into the human pulmonary system, such as type II pneumocytes 

expressing Angiotensin-converting enzyme 2 (ACE2) receptors, which allow SARS- 

CoV-2 with dimensions of 70-90 nm to enter and spread over host cells
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Figure 1. 1 The molecular mechanism of typical pulmonary lesions induced by 
DEP and SARS-CoV-2 exposure in the environment, adopted from (Mustafa et al., 
2020)

In the energy industry, the emission factor from diesel, particularly Carbon 

dioxide (CO2) emissions, which can produce greenhouse effects, is also relatively 

high, as reported by Intergovernmental Panel on Climate Change (IPCC) in Table 1.1, 

as stated by Latif et al. (2021). Consequently, the use of diesel for power energy in 

Malaysia began to decline in 2014, with the potential substitute of renewable energy 

such as solar energy, as illustrated in Figure 1.2 reported by Latif et al. (2021).

Meanwhile, diesel as a soil contaminant can be toxic to plants and soil 

microorganisms and contaminate groundwater. Diesel fuel can reduce the 

bioconcentration index of nitrogen, phosphorus, calcium, and potassium as in corn, as 

well as negatively impact the physical properties of the soil. Influence on the physical 

properties of soils, such as water retention and unsaturated hydraulic conductivity, 

caused by diesel contamination depends on the characteristics of the soil contaminated. 

In addition to the effects on soil properties and water, the retention of diesel and diesel 

vapor in the soil can induce flames and explosions when mixed with air since diesel 

fuel is classified as a flammable liquid with a flame point below 60°C (Karim, 1980).
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Table 1. 1 Emission factor for stationary combustion in the energy sector based 
on kg of greenhouse gas per TJ on a Net Calorie Basis, according to the IPCC report 
(Latif et al., 2021)

Fuel Type
CO2

(kg/TJ)

CH4

(kg/TJ)

N2O

(kg/TJ)

Natural gas 56,100 1 0.1

Residual fuel oil 77,400 3 0.6

Diesel fuel 74,100 3 0.6

Other bituminous coal 94,600 1 1.5

Sub-bituminous coal 96,100 1 1.5

Industrial waste (Biomass) 143,000 30 4

Other biogas 54,600 1 0.1

*CH4: Methane, N2O: Nitrous oxide

■ Natural Gas Coal and Coke ■ Fuel Oil ■ Diesel Renewable

80%  74'9^

Year

Figure 1. 2 Percentage of energy source inputs used in power plants (Latif et al., 
2021)

Since diesel retention in this soil depends on soil properties such as particle 

size and porosity, measurements for environmental risk assessment and remediation 

are essential, and many studies have been conducted (Kia & Abdul, 1990). With this 

awareness, fuel-related safety laws have been enforced, such as in Malaysia, governed 

by Act 302 - Petroleum (Safety Measures) Act 1984. Since 1980, various approaches 

to diesel contamination detection studies in soil, including laboratory and field studies,
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have been introduced to satisfy legal and safety requirements on health and the 

environment. Some common methods that have been introduced include geotechnical 

studies such as moisture content test, liquid limit test, direct shear test, and grain size 

distribution to assess the retention effects of diesel (Hernandez-Mendoza, Garcia 

Ramirez, & Chavez Alegria, 2021). In addition, the geophysical technique is 

frequently used to map diesel-contaminated soils in situ. Geophysical methods include 

neutron probes and Time Domain Reflectometry (TDR), Electrical Resistivity 

Tomography (ERT), and Ground Penetrating Radar (GPR).

The neutron probe and TDR methods are ground-based intrusive methods 

suitable for high spatial diversity of soil moisture and provide point measurements 

with limited sampling(Charlton, 2008). In contrast, ERT for bottom surface structure 

imaging is based on direct conductivity measurement on a shallow surface using 

electrodes with time-lapse photographic imaging (Glaser et al., 2012; Meyer et al., 

2013). GPR is a non-destructive geophysical method that measures changes in the 

electrical properties of soil to provide a high-resolution picture of subsurface variations 

(Darayan et al., 1998; Lu et al., 2017).

GPR could identify bulk dielectric contrasts in varying volumetric mixtures of 

soil, air, water, and hydrocarbons (Glaser et al., 2012). It is based on a pulse radar 

system that transmits short electromagnetic pulses into a medium where some energy 

is reflected while the remaining travels forward (Porubiakova & Komacka, 2015). This 

radar’s travel function is determined by electromagnetic properties such as dielectric 

permittivity (s), magnetic permeability (p), and electrical conductivity (o) (Martinez 

& Byrnes, 2001). The more significant the dielectric permittivity difference between 

the materials on the bottom surface, the higher the amplitude of reflection produced, 

as calculated by the amplitude reflection coefficient (R) (Glaser et al., 2012).

Dielectric permittivity is a complex function of the capacity to store energy 

when an electric field alternates in free space (Klotzsche et al., 2018; Paula Castilo, 

2015). Dielectric permittivity can also be defined as the ratio of an electric field’s 

strength in a vacuum to that encountered in a material with the same charge distribution 

(Palneedi et al., 2021; Xu, 2016; Yalcin et al., 2015). The dielectric permittivity varies
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with the temperature and frequency of the electric field, depending on the material 

structure, composition, and lattice flexibility (Jiang et al., 2018; Palneedi et al., 2021). 

The dielectric permittivity can be measured using Vector Network Analyzer (VNA) in 

laboratory (Yalcin et al., 2015; Jafery et al., 2018; Szyplowska et al., 2018), parallel 

plate capacitors (Palneedi et al., 2021; Taflove & Hagness, 2005), velocity equations 

(Weihnacht & Boerner, 2014; Wijewardana et al., 2017; Liu et al., 2020), empirical 

equations (Topp et al., 1980; Curtis, 2001; Park et al., 2017; Tempke et al., 2018) and 

volumetric mixing formulas (Bano, 2004; Iravani et al., 2020; Roth et al., 1990; 

Wharton et al., 1980). Dielectric permittivity is also used in modeling the image 

classification of GPR signals for GPR data interpretation via artificial intelligence (AI) 

(Cabrera, 2015; Travassos, Avila, et al., 2021) and machine learning (Millington & 

Cassidy, 2010; Muniappan & Balasubramani, 2011; El-Mahallawy & Hashim, 2013; 

Economou et al., 2017; Giannopoulos, 2005; Liu et al., 2020 Travassos et al., 2021).

The machine learning algorithm is a subset of Artificial Intelligence (AI) based 

on statistical learning theory that enables automatic classification and data analysis 

from experience (Muniappan & Balasubramani, 2011). Support Vector Machine 

(SVM) is a widely used machine learning algorithm for mapping the locality of GPR 

image hyperbola patterns that employs the principle of supervised learning for 

classification and regression analysis (Pasolli et al., 2008; Muniappan & 

Balasubramani, 2011; Travassos et al., 2018; Zadhoush et al., 2021). SVM classifies 

binary data by defining a divider hyperplane in a high-dimensional feature space and 

obtaining the maximum margin between classes from training data via GPR data 

segmentation (Muniappan & Balasubramani, 2011; Nishimoto et al., 2006). In 

classifying GPR data, according to Muniappan & Balasubramani (2011) and Pasolli et 

al. (2008), SVM can achieve higher accuracy and is very useful in reducing noise in 

GPR signal images. As an outcome, SVM has been used in this study to improve the 

accuracy of the interpretation of diesel-contaminated soil from GPR data 

segmentation.
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1.2 Problem Statement

Terap Red has clayey over clayey-skeletal, kaolinite, isohyperthermic, and 

typical hapludults according to the USDA Soil Taxonomy as published in Malaysia 

Common Soil of Peninsular Malaysia by Malaysia Department of Agriculture in 2018 

and Malaysia Soil Taxonomy by Paramananthan (2020). Terap Red soil has been 

classified as a type of laterite-reworked soil based on the characteristics of clay and 

other mixtures (DOA, 2018) Terap red soil is a type of soil found throughout 

Peninsular Malaysia, accounting for nearly 40% of the north part of the peninsular 

(DOA, 2018). Due to its high water retention properties, this lateritic soil is typically 

used as a soil liner to retain wastewater from solid waste and petroleum substances in 

landfill areas in Malaysia (Syafalni et al., 2015) and India (Thankam et al., 2017) and 

many more. However, if the soil is in an agricultural or residential area, sudden 

contamination, especially from diesel machinery or vehicles or the deliberate disposal 

of diesel waste, is likely to pose a significant problem.

According to Hewelke et al. (2018), 60 % of soil contamination in the 

European Union is caused by fuel minerals and heavy metals. In Malaysia, 

contamination from diesel was reported in the Sungai Langat, Selangor area by 

Mohamed (2022) from Kosmo on 27 July 2019 and the industrial area of Tanjung 

Kidurong, Sarawak by Department of Enviroment Malaysia (DOE) on 29 October 

2020. Apart from harming the environment, the retention of diesel fuel in soils higher 

than water (Kia & Abdul, 1990) and the evaporation of diesel fuel are the factors that 

contribute to changes in the physical properties of the contaminated soil, particularly 

lateritic soils. For instance, as per a study by Sharma (2014), (Hewelke et al. (2018), 

and Hernandez-Mendoza et al. (2021), diesel’s presence in sandy soils has decreased 

the optimal moisture content of the soil and increased its plasticity and friction angle. 

However, the effect of diesel fuel in the soil will be different for each type of soil 

because of the unique characteristics of each soil.

Therefore, numerous studies, including the evaluation of GPR wave signal, 

have been conducted to evaluate the impact of diesel fuel on various types of soil. As 

an example, Daniels et al. (1995), Bano et al. (2009), Guo et al. (2012), and Mansi et
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al. (2017) have successfully identified apparent GPR signal anomalies in sandy soils 

contaminated with diesel. Nevertheless the reflection of the GPR signal is dependent 

on the physical and electromagnetic properties of the soil particularly the dielectric 

permittivity as the diesel effect of the soil varies with soil type as mentioned by Mansi 

et al. (2017) and Shamir et al. (2018). Additionally, the dielectric permittivity of each 

soil influences the accuracy of the GPR’s depth measurement and resolution. This is 

due to the close relationship between dielectric permittivity and velocity, which 

determines the depth and wavelength of the GPR (resolution).

Considering the importance of dielectric permittivity, several studies have been 

conducted to predict dielectric permittivity’s, such as Topp’s model (Topp et al., 1980) 

and the complex refractive index method (CRIM) model (Comegna et al., 2016). Both 

models are frequently employed in some GPR-based studies, but each has its 

limitations. Patriarca et al. (2013) revealed that Topp’s model underestimates the 

turbulence of high-bound water, such as clay, while overestimating the turbulence of 

low-bound water, such as sand. While Steelman & Endres (2011) claimed that changes 

in the shape factor of soil texture in the CRIM model are difficult to determine, 

contributing to the low accuracy of dielectric permittivity prediction. As a result, it 

motivates establishing a new empirical relationship model for predicting the dielectric 

permittivity of contaminated Terap Red soils in GPR measurements. This model’s 

establishment is also supported by Al-mattarneh et al. (2013), Rubin & Ho (2018), and 

Mironov et al. (2019), which explain that each dielectric prediction model is only 

adequate for specific soils

In addition, interpretation of the GPR signal is difficult since the amplitude of 

the GPR signal waveform varies depending on the dielectric permittivity. Its intrinsic 

image is exposed to and qualitatively constrained by noisy data or nonlinear interaction 

issues from other devices. This issue will complicate the mapping of the distribution 

of contaminated soil by diesel using GPR, owing to the uncertainty of changes in 

contaminated soil characteristics. As a result, many studies on the reliability of GPR 

signal image explanation through automatic classification mapping, such as SVM (Wu 

et al., 2008; Pasolli et al., 2009), have been conducted. Regrettably, the automatic 

classification mapping method used by researchers such as Pasolli et al. (2008) is for
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objects permanently buried beneath the subsurface. Consequently, studies must be 

conducted to classify GPR signals using machine learning techniques such as SVM 

for diesel contamination, a movable material that induces uncertainty in soil.

1.3 Objectives

The study aims to assess the feasibility of using high-frequency GPR to 

characterize and retrieve the dielectric permittivity and determine the location of 

contaminated Terap Red soils triggered by diesel in the subsurface. In addition, studies 

on sandy soils, which some researchers commonly use, are also conducted as a 

comparison for optimized findings. Specific objectives for this thesis are:

i. To investigate the effect of diesel presence on soil properties and retrieve the 

dielectric permittivity of diesel-contamination in Terap Red soil from wave 

velocity in GPR.

ii. To establish an empirical relationship model between dielectric permittivity 

and variations in soil moisture content of diesel-contamination in Terap Red 

soil.

iii. To assess and validate the accuracy of the proposed empirical relationship for 

the prediction of dielectric permittivity of diesel-contamination in Terap Red 

soil.

iv. To delineate and improve the mapping of diesel-contaminated soil plume 

output using a Support Vector Machine classifier based on GPR signal images 

corrected with predicted dielectric permittivity.

1.4 Significance of the Study

Terap Red soil is classified as a lateritic soil with high nutrients suitable for 

agricultural purposes, landfill soil liner and widespread distribution throughout 

Peninsular Malaysia’s northwestern region. The presence of diesel spills from 

agricultural machinery or power generators will modify the soil nutrients, so this
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contaminated soil detection study is required to utilize GPR as a non-invasive and non

destructive method for the large-scale identification of diesel-contaminated soil. Since 

GPR is dielectric dependent, and the existing dielectric permittivity calculation study 

is limited to specific soils, it is essential that a dielectric calculation study for Terap 

Red soils is performed and compared to sandy soils.

Furthermore, the depth accuracy and resolution of GPR measurements 

dependent on velocity value can be improved with the prediction of the soil dielectric. 

Besides that, the GPR signal image is difficult to interpret due to dielectric changes 

caused by the presence of diesel in the soil. As a result, through automatic 

classification mapping, the image assessment of the GPR signal can be improved.

1.5 Scope and Limitation

This study focused solely on detecting diesel contamination in Tanah Terap 

obtained from agricultural areas in the state of Perlis. Diesel detection was performed 

on a large-scale tank simulation constructed of concrete with dimensions of 1.9m x 

2.5m x 1.5m and a thickness of 5cm. The use of concrete blocks is based on high 

conductivity material criteria (Wu et al., 2013), which control the propagation of 

electromagnetic (EM) waves. It can distinguish the area between simulation sites. This 

model applies to field and laboratory measurements to determine the parameters for 

constructing empirical relationships for dielectric prediction and evaluating diesel 

effects in the soil. Field measurements include two procedures: high-frequency GPR 

measurement at 800MHz, which produces high-resolution GPR images, and soil 

moisture probe testing. All geotechnical laboratory tests are based on British Standard 

(BS) to determine the properties of Terap Red and sandy soils. Furthermore, the 

validation of dielectric permittivity predictions is limited to comparing existing models 

commonly used in validation studies and in-situ testing of the VNA. Automated 

classification mapping for GPR signal images only using SVM classifier with 

comparison using Logistic Regression (LR) in WEKA software
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1.6 Thesis Outline

This thesis is divided into five chapters. The first chapter discusses the study’s 

background, problem statement, objectives, the significance of the study, the scope of 

the study, and research contribution.

Chapter 2 highlights the definition of contaminated soil; the concept of GPR 

measurement includes dielectric permittivity parameters and GPR data processing and 

descriptions of geotechnical tests and statistical tests for empirical relationships. In 

addition, the effect of the presence of diesel on soil properties is discussed. This 

chapter also presents some techniques used to detect contaminated soils, including 

existing dielectric determination studies.

Chapter 3 describes the detailed methodology, including selecting materials for 

the construction of soil contamination simulation sites and soil samples suitable for the 

study. This chapter also includes the method of data collection, GPR data processing, 

empirical relationship construction, and mapping of contaminated soil classification 

models.

In Chapter 4, the study’s findings and statistical analysis, along with a 

discussion of the research methodology. In this chapter, each study result, analysis, 

and discussion are described based on the study's objectives. Next, this chapter 

describes GPR signal interpretation analysis results in conjunction with geotechnical 

results. Furthermore, the results of establishing an empirical relationship model 

between dielectric permittivity and soil content and statistical results and an accuracy 

assessment, followed by verification results. This chapter also includes the results and 

analysis of contaminated soil classification mapping for GPR data using SVM and LR 

classifiers.

Finally, chapter 5 concludes the study’s findings, referring to the study’s 

objectives, study contribution, limitations, and recommendations for future research.
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