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ABSTRACT 

The spectroscopic capability of the satellite observation of ocean colour 
contributes to the estimation of the concentration of Chlorophyll-a (Chl-a) on the ocean 
surface. Chl-a can be a proxy in the determination of the phytoplankton biomass 
distribution, which indicates the trophic status of the water body. Long-term records 
of ocean colour data at lower spatial resolution of 1 km has been widely used in the 
derivation of various ocean colour algorithms. Although most of the algorithms 
perform well in clear water state, the significant uncertainty is evident when algae-
prone areas near the coast and shallow water are mapped at the 1-km resolution. 
Therefore, the current study designed a methodology for new estimation of Chl-a and 
nutrient concentration in coastal water from multi-platform satellite imageries at 
medium spatial resolution (10 to 30 m) with systematic accuracy assessment using 
collocated sea-truth. In particular, Artificial Neural Network (ANN), Support Vector 
Machine (SVM), and Random Forest (RF) techniques were used to establish the 
complex relationships of collocated remote sensing reflectance from the consecutive 
Landsat 8 Operational Land Imager (OLI) and Sentinel 2 MultiSpectral Instrument 
(MSI) images and in-situ parameters. Using these machine learning methods, this 
study also demonstrated the estimation of nutrients (nitrate and phosphate). The 
radiometric resolution of OLI in this study allowed higher overall accuracy of Chl-a 
estimates in the West Johor Straits (WJS) water. Meanwhile, the ANN recorded higher 
accuracy of Chl-a and nitrate estimates than that of the SVM and RF variants. Using 
the ANN, the Chl-a estimates at lower root-mean-square error (RMSE < 6 mg/m3) and 
APD of lower than 35% were mapped. The regression between Chl-a and nutrients 
was remarkably low (R2 < 0.2) on OLI and MSI. However, Fine Tree RF and ANN 
models improved the precision (RMSE) of nitrate (< 12 µmol/L) and phosphate (< 3 
µmol/L). The absence of direct relationships of optical properties and spectral 
characteristics with nutrients led to higher uncertainties (> 100%), and this made 
phosphate content estimates in shallow water dubious, resulting in the need for 
extensive in-situ validation. Machine learning offers powerful estimation capability on 
Chl-a and nutrient concentration, especially for the higher spatio-temporal variability 
optical parameter of coastal waters, which was successfully demonstrated in this study 
through the discussed application in WJS.   
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ABSTRAK 

Kebolehan sepektroskopi  satelit pemerhati ocean colour menyumbang kepada 
penganggaran kepekatan klorofil-a (Chl-a) pada permukaan laut. Chl-a adalah proksi 
dalam penentuan taburan biojisim fitoplankton yang boleh menandakan status trophic 
badan air. Rekod jangka panjang data ocean colour daripada sensor ocean colour pada 
resolusi ruang rendah 1 km telah digunakan secara meluas dalam perkembangan 
algoritma ocean colour. Penganggaran kebanyakan algoritma ocean colour mencatat 
prestasi baik dalam keadaan air jernih tetapi ketidakpastian menjadi ketara apabila 
kawasan dedahan alga berdekatan perairan pantai dan kawasan cetek dipetakan pada 
resolusi 1-km. Oleh itu, kajian semasa ini merekabentuk metodologi bagi anggaran 
baru kepekatan Chl-a dan nutrien di kawasan pantai daripada imej pelbagai platform 
satelit pada resolusi ruang sederhana (10 hingga 30 m) dengan penilaian kejituan 
sistematik menggunakan data laut terkumpul. Khususnya, teknik rangkaian neural 
buatan (ANN), mesin vektor sokongan (SVM) dan hutan rawak (RF) digunakan untuk 
mewujudkan hubungan kompleks antara kumpulan pantulan penderiaan jarak jauh 
daripada urutan imej Landsat 8 Operational Land Imager (OLI) dan Sentinel 2 
MultiSpectral Instrument (MSI) dan parameter in-situ. Melalui kaedah pembelajaran 
mesin-mesin ini, kajian ini juga menunjukkan anggaran nutrien (nitrat dan fosfat). 
Resolusi radiometrik OLI membenarkan peningkatan kejituan keseluruhan anggaran 
Chl-a di perairan Selat Johor Barat (WJS). ANN merekod kejituan anggaran Chl-a 
yang lebih tinggi daripada varian SVM dan RF. Menggunakan ANN, anggaran Chl-a 
pada ralat punca min kuasa dua (RMSE < 6 mg/m3) dan APD kurang daripada 35% 
telah dipetakan. Regresi antara Chl-a dan nutrien adalah sangat rendah (R2 < 0.2) pada 
OLI dan MSI. Namun, model Fine Tree RF dan ANN telah meningkatkan ketepatan 
(RMSE) nitrat (<12 µmol/L) dan fosfat (< 3 µmol/L). Ketiadaan hubungan sifat optik 
terhadap nutrien telah menyebabkan ketidakpastian yang lebih tinggi (> 100%) dan 
anggaran kepekatan fosfat di perairan cetek diragukan dan sangat memerlukan 
pengesahan in-situ yang menyeluruh. Pembelajaran mesin menawarkan keupayaan 
anggaran yang kuat terhadap kepekatan Chl-a dan nutrien, terutamanya bagi 
kevariabelan spatio-temporal parameter optik yang lebih tinggi di perairan pantai, 
seperti mana yang didemonstrasi dalam kajian ini melalui perbincangan kegunaan di 
WJS.   
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Study 

Terrestrial activities and ocean processes always receive significant natural 

resources and inevitable residues from the hectic and intensive anthropogenic 

activities, resulting in various kind of impacts towards the aquatic ecosystem. These 

repercussions cause significant impact in the coastal zone (Yasser, 2003). Terrestrial 

input via nutrient-rich river discharge resulted in high phytoplankton biomass 

throughout coastal areas, possibly leads to eutrophication algal blooms (Sellner et al., 

2003; Wang et al., 2003; Dai et al. 2008; Nazmi et al. 2013), affects the major 

economic losses and endangers the human health (Fletcher, 1996; Morand and 

Merceron, 2005). Estuaries are semi-enclosed coastal area that receive both freshwater 

and saltwater inflows. They can be classified as vertically mixed, slightly stratified, 

highly stratified, or saline-wedge (Haron and Tahir, 2015). Several estuaries are also 

linked to bays that are near to cities and agricultural land (Pour and Hashim, 2016).  

Rapid urbanization, industrialization and intensifying agricultural production resulting 

in the increase of nutrient level entering to estuaries, which may lead to water 

eutrophication eventually (Pour and Hashim, 2016).  

Phytoplankton is an essential aquatic photosynthesis organism and plays an 

imperative role in the oceanic food web that consequently contributes to the world’s 

primary production. Phytoplankton uses photosynthesis pigment such as chlorophyll, 

and other light-harvesting pigments at the base of the ocean food web to carry out 

photosynthesis by virtue of the ability to convert sunlight into biochemical energy 

required for carbon fixation. Large accumulative number of phytoplankton and 

macroalgal abundant reported in the coastal areas is commonly known as macroalgal 

blooms phenomenon (Sellner et al., 2003). Blooms commonly live in marine and 

freshwater environments by eutrophication and limited current flows exploitation (Lim 
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et al., 2005; Pour and Hashim, 2016). Several international efforts have taken serious 

reduction measures on number of algal blooms cases by studying the the spatio-

temporal trend and introducing some new policies to contain them. In many European 

countries, algal blooms cases have been reduced through effective monitoring under 

the UE legislation since 1991 (UNESCO, 2016). In Malaysia, Sabah has been known 

as the hotspot for the harmful algal blooms (HABs) and the red tide outbreaks. 

Consistent monitoring of algal blooms by the Department of Fisheries Sabah since 

1976 keeps the safety of seafood for the local food consumption (Jipanin et al., 2019).  

Chlorophyll-a (Chl-a) measured in mg/m3 significantly contributes to the 

primary productivity in ocean livelihood ecosystem (Feret et al., 2018) by the 

formidable relation with many important biophysical and biochemical 

parameterization such as nutrients and salinity (Gitelson et al., 2014; Houborg et al., 

2015). Accurate measurement of Chl-a along with corresponding oceanic nutrients is 

vital in successful phytoplankton monitoring where various oceanic parameters as 

inputs to the marine agricultural system in complex water conditions for productivity 

estimation are involved (Giardino et al., 2019). Existing in situ Chl-a and nutrient 

observation applies complex procedures to sample the algae bloom attributes (Zeng 

and Li, 2015). The design of sampling routine either in once, twice or more per month 

is dependent on the reporting area at risk of red tides and Paralytic Shellfish Poisoning 

(PSP). Water samples taken from the site instrumentation to the lab analysis provides 

information about the chlorophyll contents and cell abundances estimation (Sellner et 

al., 2003). Yet, the process is tedious, labor-intensive work, time-consuming, costly 

and, in fact, less practical particularly for such large area where high number of 

samples are needed. In recent years, remote sensing has received a lot of attention in 

Chl-a and nutrients mapping. Narrowband hyperspectral and multispectral sensing 

capabilities offer reliable, quick, cost-effective and even more practical method for 

synoptic mapping routine. 

Unlike conventional in-situ sampling, satellite remote sensing becomes a 

practical apparatus to monitor the marine environment at better spatio-temporal 

observation in which the spectroscopic and synoptic capability allows quantification 

on the biophysical impact of eutrophication at higher spatial and temporal accuracy 
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(Holt et al., 2017). Satellite remote sensing missions have served for the last 30 years 

to provide spatially and temporally comprehensive raster data of the photosynthesis 

pigment and the Chl-a which strongly manifesting the algae bloom presence. This 

ocean color information can be used to estimate the concentration of other substances 

in the ocean by measuring variations in the spectral quality of the water surface 

(IOCGG, 2000).  

Satellite ocean color gives synoptic information about the spectral water-

leaving reflectance, which is eventually can be used to quantitatively decompose the 

marine inherent optical properties (IOPs) and the apparent optical properties (AOPs) 

by means of the correlation with the Chl-a concentration, DOM, and particulates 

material (Werdell et al., 2018). The water leaving radiance measured in the visible 

portion of electromagnetic radiation quantifies the presence of these substances in the 

ocean surface waters. The visible spectrum is selectively being absorbed by specific 

Chl-a pigments indicating the presence of phytoplankton. In 1978, NASA launched 

the Coastal Zone Color Scanner (CZCS) on Nimbus-7 with the ability of detection and 

measuring the Chl-a concentration in the ocean skin. The CZCS mission was 

terminated in June 1986 after stability problems causing large uncertainties in the 

radiometric calibration (Evans and Gordon, 1994). Some series of ocean colour 

mission were initiated for daily operational routine with an improved instrument 

specification and capabilities such as OCTS (1996-1997), SeaWIFS (1997-2010) and 

MERIS (2002-2012) (O’Rilley and Werdel, 2019). The most prominent ocean colour 

sensors by NASA are SeaWIFS and the following MODIS in 2002 providing 

continuous observation for global coverage data across the visible spectrum and 

narrowly defined band at minimum noise level (Robinson, 2004).  

The CZCS mission has proved the advancement of Chl-a estimation by ocean 

color sensing in the early 1980s. The most successful algorithm for estimating Chl-a 

concentration is band ratio, depicting the ratio of the blue reflectance to the green 

reflectance known as the blue-green ratio (O’Rilley and Werdel, 2019). The 

application of blue-green ratio requires reflectance of at least one narrow blue band 

and one green band despite of the fact that more spectral bands are applied for study 

in coastal and shelf waters. As the ratio of blue to green gets lower, the water appears 
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greener, hence increased the Chl-a estimation. It is known that underwater optics or 

inherent optical properties (IOP) are related to the concentration of chlorophyll, DOM 

and particulates materials (Robinson, 2004). However, there was no method to derive 

purely from the underwater optics and thus determines the concentration of water 

parameters. The most reliable approach is by using empirical algorithm on the 

measured reflectance data. The empirical algorithm involves the sea-truth Chl-a and 

radiometric observation of the normalized water-leaving radiance (nLw) or the remote 

sensing reflectance (Rrs) at several wavelengths. Nevertheless, the empirical algorithm 

requires higher correlation between both inputs but the regression may become more 

complicated when the water condition is getting complex and heterogenous.  

Morel and Prieur (1977) have divided the marine water into two categories; 

Case-1 or Case-2 water. Special ocean colour retrieval algorithm has been designed 

either for retrieving the bio-optical model from both types of waters. Case-1 water has 

water optical properties that are dominated by phytoplankton and co-varying in-water 

constituents, whereas the Case-2 water has water optical properties that are influenced 

more by other in-water constituents in the form of organic or inorganic particles and 

vary without phytoplankton. The empirical algorithm likely encounters the inherent 

bias associated to Chl-a estimation when applying on the Case-1 and Case-2 water 

simultaneously. This complex water condition embarks eutrophication, which is 

defined as the response of aquatic ecosystems to nutrient loading (Edmondson, 1991).  

Innovative effort in combining the standard band ratio algorithm with the 

colour index (CI) method was initiated by the studies of O'Rilley et al. (1998) and Hu 

et al. (2012) to produce generalization in the Chl-a estimates for all ocean colour 

missions (O'Rilley and Werdel, 2019). Yet, the improved algorithm is only applicable 

to clear water (i.e. Case-1 and open ocean). There were initiatives to retrieve Chl-a in 

the coastal region using band-ratio variants but it was difficult due to the optically 

influence of other in-water substances (regardless of Chl-a presence) that resulted in 

underestimation of satellite derived Chl-a (Yang et al., 2018). Previously, the green or 

near-infrared (NIR) bands were frequently used in conjunction with the red band. In 

shallow coastal water, bottom reflectance has a strong influence on the green band 

with low attenuation effects. Several studies also have applied the red band in Chl-a 
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algorithm development for shallow coastal water. The red band can work at certain 

surface water depth by hypotactically assuming that the spectral energy has high 

attenuation capability and less effects by the bottom reflectance and the colored 

dissolved organic matter (CDOM) spectral residue. An algorithm based on the 

backscattering coefficients at NIR bands to determine the Chl-a concentration was also 

introduced to demonstrate the red-NIR algorithm applicability especially in the 

estuarine water (Abbas et al., 2019). Besides, previous Chl-a studies were experienced 

overestimation by the inevitable spatial bias and this was particularly evident for the 

MODIS derived Chl-a at 1-km resolution even by the finer band spectral resolution at 

443, 490 and 560 nm. 

In Peninsular Malaysia, MODIS data have been utilized in mapping the Chl-a 

concentration. The data was limited to open ocean and less suitable for coastal 

mapping due to low spatial resolution. Study by Lah et al. (2014) reported that the 

MODIS OC3M algorithm endured overestimation in the Case-2 water of Malacca 

Straits. Despite of fairly acceptable Chl-a estimation with the absolute percentage 

difference (APD) of less than 35% was reported for Case-1 water, there was higher 

APD (>90%) at measurement near to the coast due to Case 2 optical water effect. The 

study found that the Chl-a homogenous distribution designated for low spatial 

resolution data was violated by the Case 2 water causing extensive overestimation in 

which the Chl-a was sparsely distributed in heterogeneous fashion within the 1-km 

spatial extent. During the orbit cycle, MODIS exhibit larger day-to-day variability in 

percentage difference for most of the coastal conditions. The relatively lower energy 

signal in the red channel embarked the highest APD (up to 25%) amidst all other 

channels. The red channel (Rrs 655) encountered the largest discrepancies in coastal 

waters whereas blue channel (Rrs 443) is found to be the most dependable product for 

oceanic surface with Chl-a < 0.3 mg/m3 (Pahlevan et al., 2016; Moore et al., 2015). 

Even though, previous studies highlighted high productivity of coastal water, the 

accuracy of Chl-a has been compromised by low sensor spatial resolution and 

environmental factors such as cloud cover (>40%). 

The limiting nutrients for algal biomass are frequently recognized as nitrogen 

and phosphorus, whereas silicon is required for diatom growth (Hecky and Kilham, 
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1988). Nitrogen can be found in a variety of forms, including dissolved nitrogen, 

amino acids, amines, urea, ammonium (NH4+), nitrite (NO2-), and nitrate (NO3) 

(NO3-), in fresh water (Limnology, 2001). In aquatic ecosystems, phosphorus (P) can 

be found either in particulate matter or as soluble inorganic phosphorus, 

orthophosphate (PO43-) (Knud-Hansen, 2017). The increasing eutrophication in 

receiving water bodies were connected to nutrient inputs from contributing watersheds 

and rivers (Pinckney, et al., 2001; Smith, 2003; Abbas et al., 2019). Significant 

progress has been achieved in understanding the dynamics of natural and 

anthropogenic nitrate and phosphate inputs to coastal waters over the last few decades. 

The recognition of human impact on the nitrate and phosphate cycles has sparked a lot 

of research into how to better manage these nutrients. Anthropogenic nitrate and 

phosphate production from contributory agriculture, industrial, and human activities 

have significantly increased the amount of N and P in water bodies, resulted to the 

widespread eutrophication of both inland and coastal waters (Pinckney et al., 2001; 

Smith, 2003; Abbas et al., 2019). Study in Šibenik Bay area observed the strong 

influence of the freshwater inflow of the Krka River station, where maximum values 

of nitrate (57.93 µmol/L) were recorded (Bužančić et al., 2016). According to Goi 

(2020), data in 2016 and 2017 has shown that most of Malaysia’s river water quality 

was in Water Quality Index Class II and Class III. The status of marine water quality 

in Malaysia shows the threshold of the nitrate and phosphate level, 60 mg/L and 

75mg/L for Class II and Class E (mangroves, estuarine and river-mouth water) and 

700 mg/L and 670 mg/L for Class III (ports, oil and gas fields) (Department of 

Environment, 2009).  

Commonly, the patterns and trends in nutrient concentrations is based on 

traditional monitoring approaches, such discrete and nonsynchronous samples 

collected manually at weekly to monthly intervals followed by days to weeks for 

laboratory analyses to be completed. While this low temporal frequency approach — 

coupled with modeling and statistical techniques has yielded critical information. 

However, more significant manpower and cost were involved. This is particularly 

important for episodic events such as floods that are difficult to anticipate but can have 

significant and long-term ecological, economic, and human health effects. Remote 

sensing has provided a tool for monitoring changes in coastal waters (Choi et al., 2012; 
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He et al., 2013; Markogianni et al., 2018). Higher spatial and temporal resolution, in 

particular, made it easier to observe highly dynamic and small-scale changes in coastal 

waters (Choi et al., 2012; He et al., 2013; Markogianni et al., 2018). However, most 

studies on water quality remote sensing have mainly focused on optically active 

variables (He et al., 2008). Some water quality parameters, such as nitrate and 

phosphate concentrations, have no direct optical properties and spectral characteristics 

and cannot be directly observed by current satellites (Mobley, 1994; Gholizadeh et al., 

2016; Dong et al., 2020). Yet, these nutrients can have a strong correlation with 

optically active variables that can be estimated by remote sensing (Kutser et al., 1995; 

Chang et al., 2015). 

It is very challenging to obtain high correlation between spectral data and in-

situ measurement. The accuracy of Chl-a and nutrients has been hampered by 

environmental conditions and low sensor spatial resolution. Landsat 8 OLI and 

Sentinel 2 MSI has relatively fine spatial resolution in the ocean color perspective, 

with 30 and 10 m resolution respectively, and this has embarked a remarkable coastal 

mapping capability. OLI provide medium-resolution sensors with push broom sensor 

and 16 bits DN, which allows for significantly higher signal-to-noise ratio (SNR) to 

monitor biophysical changes and improved OLI pigment discrimination ability more 

precisely in the coastal water (Pahlevan et al., 2014). MSI, with two twin satellites 

(Sentinel-2A and Sentinel-2B), with a high 12-bit radiometric resolution generates 

spectral images with 13 bands in varying wavelength (433 nm to 2190 nm), 

respectively. Unlike MODIS, MSI and OLI spatial resolutions are better in resolving 

spatial information of surface Chl-a in the region near to shore. Additionally, MSI 

provides scenes in 290 km swath and a revisit time of five days at the equator to the 

OLI which operates on a 16-day cycle (USGS, 2016). The new coastal/aerosol band, 

centred at 443 nm OLI, enables for the determination of the upper water column's 

inherent optical properties (IOPs) near the Chl-a peak absorption. Furthermore, the 

MSI may be qualified to a wider variety of Chl-a retrieval techniques than the Landsat 

8 OLI due to the presence of a red-edge band centred near the 705 nm wavelength in 

the near infrared (NIR) (Beck et al., 2016). 
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By recognizing the nonlinearity and impact of complex optical interaction over 

the eutrophic water, this research motivated to designs a methodology for Chl-a and 

nutrient content from multi-platform satellite imageries using machine learning 

techniques over West Johor Straits. The advancement of machine learning techniques, 

with moderate satellite sensor, OLI and MSI has embarked a remarkable coastal 

mapping capability and resolve the complex relationship over the study area (Ouma et 

al., 2020). The machine learning allows complicated water types to be correlated to 

the inherent optical properties (IOP), apparent optical properties (AOP) and the 

measured Chl-a in-situ (Ioannou,2011). Through this algorithm, the best machine 

learning was assessed to reduce the spatial and temporal variabilities impact on 

satellite data compared to existing ocean color algorithms. The results provide 

information on monitoring trophic status along the coastal water and to assess the 

future challenges in this unique water condition. 

1.2 Problem Statements 

Spatial attributes of Chl-a derived from satellite ocean colour vary significantly 

in the coarse resolution imagery and at limited visible bands. Despite the introduction 

of modern and precise sensors, large margin of uncertainty in the satellite estimation 

of Chl-a concentration in coastal waters is apparent by the bottom reflectance in 

shallow water systems (Abbas et al., 2019). Unlike the single spectral band ocean 

colour algorithm, the band ratio algorithm reduces the unwanted scattering energy as 

well as the inherent atmospheric attenuation. The algorithm is widely used but limited 

for open ocean and Case 1 water type. Although the band ratio has been demonstrated 

to surpass semi-analytical algorithms in determining Chl-a in oceanic and coastal 

waters (Brewin et al., 2015), the accuracy of Chl-a derived was poor for coastal waters 

(Zheng and DiGiacomo, 2017). According to Tilstone et al. (2021), the accuracy of 

satellite derived Chl-a concentration should meet the APD below 35% in the quality 

standard of NASA. In Case 1 water, the standard ocean color algorithm can derive 

acceptable accuracy of Chl-a content (APD<35%). However, in Case 2 water where 

the correlation among visible bands becomes weaker, the APD may exceed 35%. Thus, 

the research in band ratio focuses on the assessment of Chl-a estimation in Case 2 
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water. The combination of multi-band ratio has been identified to complement such 

limitation by single band ratio. As far as literature was concerned, no analysis has ever 

been conducted to determine the best band ratio combination for estimating the Chl-a 

particularly in the complex water condition. This study exploits the potential of multi-

band in visible spectra which is available in the modern remote sensing satellite.  

The resolution of current ocean color sensors remains one of the most 

constraining factors for Chl-a retrieval in nearshore areas, as they are unable to resolve 

coastal ocean characteristics accurately (Mouw et al., 2015). The Moderate Resolution 

Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite launched in 2002 with 

data at 36 spectral bands is extensively used to measure the Chl-a concentration 

worldwide (Gierach et al., 2017; Poddar et al., 2019). In optically complex water, the 

coarse spatial resolution (1 km at nadir) and uncertainties associated with equipment 

calibration and data processing methods limit the ability to monitor the Chl-a 

concentration (Trinh et al., 2017). Over optically complicated waters, Moore et al. 

(2015) reported the bias levels for Aqua MODIS is APD>35% (Zibordi et al., 2015). 

Albeit the filtered standard deviation divided by the filtered mean threshold (CV) was 

introduced in MODIS studies to eliminate simulated outliers, the daily simulated 

percent difference (PDs) can reach as high as ±18% (Pahlevan et al., 2016). The largest 

PDs may be accounted to algal bloom events and terrestrial inputs influxes. The 

commission of Operational Land Imager (OLI) on board the Landsat 8 and 

Multispectral Instrument (MSI) on-board Sentinel-2 offering ocean colour bands at 30 

m and 10 m resolution respectively, could contribute to the spatial and accuracy 

enhancement in the Chl-a retrieval over coastal waters region (Lobo et al., 2015; 

Watanabe et al., 2017). 

Number of good qualities MSI images is significantly higher than that of OLI 

throughout the year. MSI provides images at three times more than of the OLI 

throughout the year due to the dual revisiting time advantage. There is significant 

overestimation in OLI radiometric accuracy, but modest underestimation can be 

observed for MSI. The difference in radiometric resolution between both sensors (i.e., 

16 bits at maximum 65536 DNs for OLI and 12 bits of 4096 DNs for MSI) has induced 

signal saturation. This saturation may be more noticeable on bright and intensely 
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reflecting surfaces, and it may be amplified by the difference in field of view (FOV) 

(Dagar et al., 2019). Such issue regulates the relation between optical properties and 

Chl-a to be even more complex and this study foresees the artificial intelligence with 

complex modeling capability is apparently the possible solution. Utilization of the 

artificial intelligence on OLI and MSI is novel, and indeed no study using OLI and 

MSI to estimate the Chl-a was reported in coastal region of Peninsular Malaysia 

especially at West Johor Straits.  

Nitrogen (N) and phosphorus (P) are vital nutritional elements for primary 

production. In coastal region, nutrients are usually conservative (Wang et al., 2018). 

Many studies have shown the capability of satellite remote sensing to monitor the 

spatiotemporal variability of these nutrients (Trinh et al., 2017). Oceanic nutrient 

mapping remains difficult because some nitrate and phosphate concentrations, are 

hardly detected by the existing satellites. Dissolved nitrogen and phosphorus have no 

significant spectral response and not optically active in the visible and near-infrared 

spectrum (Gholizadeh et al., 2016; Dong et al., 2020). Some empirical models have 

been established based on nutrient relationships with Chl-a, and other optically 

sensitive materials (Huang et al., 2015; Huang et al., 2016). Though such relationship 

is usually unstable and less accurate due to other factors such as large river run-off and 

salinity influence. The basis of this issue is the complex relation was established 

between nutrients and optical properties with spatio-temporal variability by the water 

condition. Thus, machine learning regression could offer a way to accurately develop 

this complex relation at the expense of the spatio-temporal variability of the water 

condition.   

1.3 Research Questions 

The research question is expected to be the important indicator that will 

highlight the main idea for this research. 

(a) How the new combination of band ratio improves the current ocean color 

model? 
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(b) How to develop machine learning model from OLI and MSI data to estimation 

of Chl-a and nutrients concentrations?  

(c) What are the accuracy and the limitation of the machine learning in the Chl-a 

and nutrients estimation?  

 

 

1.4 Research Aim and Objectives 

This research aims to designs a methodology for Chl-a and nutrient 

concentration estimation from multi-platform satellite imageries using machine 

learning techniques over West Johor Straits and the accuracy assessment of Chl-a 

estimates using on-site measurements. The objectives of the research are:  

(a) To determine the best band ratio combination from different optical bands of 

OLI and MSI for Chl-a estimation 

(b) To develop machine learning model to estimate the Chl-a and nutrient 

concentration from multi-band ratio combination between optical satellite and 

in-situ measurement 

(c) To assess the accuracy of satellite derived Chl-a and nutrient concentration 

 

 
1.5 Scope of the Study 

 This study mainly focus on designs a methodology for Chl-a and nutrient 

estimation from multi-platform satellite using machine learning techniques. The 

primary data used in this study is sea truth measurement and remote sensing data. 

Among platforms that provide open access to imagery, the Landsat 8 OLI (Operational 

Land Imager) (Concha and Schott, 2014; Boucher et al., 2018) and multi-spectral 

imager (MSI) on board the ESA’s Sentinel 2 platform (ESA-European Space Agency, 

2015) with medium-spatial resolutions at 30 and 10 meters, respectively, seems to 

offer the best combination of spatial, temporal and spectral coverage for Chl-a 

retrievals in coast and inland waters. The improved radiometric resolution of Landsat-

8/OLI with reduced image noise and spectral heterogeneity is observed to be 

particularly significant in precise water surface extraction and water quality retrieval 
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(Nguyen et al., 2016). For MSI, aside from its high temporal resolution (five days) and 

12-bit radiometric resolution, the sensor also delivers high radiometric dynamics for 

the observed water surfaces, promoting more precise Chl-a mapping in recent times 

(Watanabe et al., 2017). Images from these sensors were selected with cloud covers 

(below than 10% octave level). 

The atmospheric correction algorithm applied for OLI and MSI image, using 

C2RCC processor from SNAP. This data was selected to analyse the Chl-a and 

nutrients estimation in West Johor Straits from 2017 to 2018 to match with sea truth 

measurement. Synchronized in situ measurement and satellite data were used with the 

allowance of ±7 days of differences. The time window may increase without 

introducing significant uncertainty into the model (Kayastha et al., 2022). For OLI, 48 

matches were found, while 103 for MSI. Four sampling points were chosen in West 

Johor Straits. Pixel averaging were applied on available image using 3x3 window 

kernel at each of sampling station, to optimize the chances of number of match-ups.  

Coincident sea truth measurements were collected gives information on the 

Chl-a, and nutrients and used for the Chl-a and nutrient modelling, up to twice a month 

from 2017 to 2018. The sampling station provided Chl-a, sea surface temperature and 

nutrients data from four sampling stations. Rainfall data was obtained from Malaysian 

Meteorological Department (2020), Malaysia. West Johor Straits is active with 

aquaculture and received influence from rivers nearby and categorized as eutrophic 

water.  This area were chosen because they were involved in bloom events reported by 

Lim et al. (2012) and Fisheries Research Institutes Penang (2017).  

This study only focused on Chl-a and nutrient estimation, at four sampling 

station in West Johor Straits. The best band ratio combination and single band were 

defined to select the best input for Chl-a and nutrient modelling using three different 

approach machine learning, artificial neural network, support vector regression and 

random forest model in MATLAB. The optical data from OLI and MSI were used to 

estimate the Chl-a and nutrients model through the non-linear least square optimization 

by the Levenberg-Marquart (LM) method, two kernel support vector regression 

(Linear and Gaussian) and regression tree (Fine Tree, Medium Tree and Coarse Tree) 



 

13 

by 5-fold cross validation. These methods were applied to determine the best model 

and to solve the non-linear relation between the optical data and nutrients.  

1.6 Significance of the Study 

The monitoring of water quality parameters has become a major challenge 

because of effort-intensive, time consuming and unsuitable for large area. This study 

presents a novel and local machine learning model to estimate Chl-a concentration for 

WJS from remote sensing measurements. The marine authority would benefit from 

this study, as well as FRI and Department of Fishery, Chl-a estimate is relative to the 

phytoplankton and higher resolution Chl-a map from OLI and MSI at 10 to 30-meter 

scale and 10-day observation attributed the spatial and temporal distribution of algal 

bloom. Coincident shoreline changes compliments to the Chl-a resulting in the 

comprehensive interpretation of the impact of anthropogenic and geographical 

variations along the shoreline. The results are reliable in mitigation strategy and 

management of Chl-a impact towards sustainable ocean productivities, maritime 

communities, and climate in Johor water territory. Not to mention, the remote sensing 

images are freely accessible online and available for long period archive. 

Chl-a estimation by band-ratio algorithms always experiences complicated 

extraction and overestimation particularly over the ocean with Case-2 water type. The 

band-ratio algorithm usually applies a ratio of blue to green reflectance and exhibits 

higher Chl-a due to the lower green reflectance. This study introduces the machine 

learning model that is trained by the actual and accurate Chl-a measured at the scene 

and contains complex relations between Case-2 waters. Results of the machine 

learning show robust and highly accurate Chl-a estimates regardless of the water type 

at the pixel position. The machine learning model allows a user to apply all reflectance 

data in all bands and the band-ratio combination and finding the best combination for 

the models. Thus, it helps scientist and The Intergovernmental Oceanographic 

Commission of UNESCO (IOC) to focus only on the image interpretation of derived 

Chl-a map and rapidly understand the process for Chl-a spatial and temporal 

distribution. 
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1.7 Research Outline 

This thesis is divided into five chapters. Chapter 2 reviews past studies to 

identify the state of the art of Chl-a, ocean colour remote sensing, and to assess the 

past and present sensor of ocean color satellite, application of machine learning in 

water quality parameter estimation and coastal geomorphology impact on the Chl-a 

and nutrients variability, and to identify the research gaps from those studies. In 

estimating Chl-a and nutrients, the best band ratio and best band combination were 

determine for machine learning model development. This study depicts the pre-

processing and processing schemes by specifying the criteria of the input, output and 

statistical assessments at every processing stage. Both ocean color band ratio and 

machine learning approach for deriving Chl-a and nutrients from OLI and MSI were 

performed in this study for the West Johor Straits. These details on the methodology 

are described in Chapter 3. The results, analysis and discussion are assembled in 

Chapter 4, while Chapter 5 comprises the conclusion, contribution to knowledge and 

recommendations of the study. The fundamental of ocean remote sensing is included 

as an Appendix A, in which the optical ocean remote sensing were explained. 
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