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ABSTRACT 

The accuracy of the geoid model is critical in providing accurate earth surface 

information. Many modification procedures have been developed in recent decades 

to obtain accurate local geoid models.  Furthermore, satellite-based positioning 

techniques, particularly the Global Navigation Satellite System (GNSS), have been 

widely used, and more emphasis has been placed on the precise determination of 

geoid models.  The main objective of this study was to improve the quality of the 

geoid model in a small area. The Klang Valley, with an area 2,500 square kilometres, 

was selected as an area of interest. A total of 1,258 terrestrial, 878 airborne gravity 

data, 3-arc Shuttle Radar Topography Mission (SRTM) model and Earth 

Gravitational Model 2008 (EGM2008) as well as 45 benchmarks were used to 

develop the Klang Valley Gravimetric Geoid Model (KTHKVGM2020Grav).  The 

selection of the Global Gravitational Model (GGMs) was assessed based on 

terrestrial gravity data and GNSS levelling.  The EGM2008 is the best model for this 

study, with an accuracy of ±0.122m and ±0.851m, respectively. Meanwhile, the 

SRTM model was assessed based on GNSS and benchmark with an accuracy of 

±3.117m and ±3.024m, respectively. The gravity dataset was assessed with anomaly 

residuals based on ten mGal outliers that caused 181 terrestrials and 41 airborne 

gravities eliminated.  Using the Tscherching/Rapp model and correlated method, the 

Klang Valley boundary problem value for signal and noise variance on EGM2008 

was set at 10,800 maximum degrees.  Consequently, the EGM2008 optimum upper 

limit, M, and upper limit of modification parameter, L was 2,190 maximum degrees.  

Capsize, 0 of the study area was 0.1 degree as a minimum bias with variance error, 

ten mGal of the terrestrial gravity anomaly, ∆g.  All datasets were gridded using the 

Kriging method with patching node encompassing cell interpolation.  After additive 

estimations, the height of the KTHKVGM2020Grav geoid model was estimated 

between -5.011m and 3.998m, respectively.  The KTHKVGM2020Grav geoid model 

was evaluated with 45 GNSS levelling stations and obtained ±11mm accuracy.  

Meanwhile, the KTHKVGM2020Grav geoid model successfully fitted into Peninsular 

Malaysia Geodetic Vertical Datum (PMGVD) using 35 GNSS levelling stations after 

correlating with four transformations parameters. Klang Valley fitted geoid model 

(KTHKVGM2020fit) succeeded with ±5mm level accuracy. This study has 

demonstrated that the geoid model developed using the KTH approach provides 

better quality vertical reference than other methods, especially for a small area, such 

as Klang Valley. 
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ABSTRAK 

Ketepatan model geoid adalah penting dalam menyediakan maklumat tepat 

permukaan bumi. Banyak prosedur pengubahsuaian telah dibangunkan dalam 

beberapa dekad kebelakangan ini untuk mendapatkan model geoid tempatan yang 

tepat. Tambahan pula, teknik penentududukan berasaskan satelit, khususnya Sistem 

Satelit Navigasi Global (GNSS), telah digunakan secara meluas dan lebih banyak 

penekanan telah diberikan kepada ketepatan model geoid. Objektif utama kajian ini 

adalah untuk meningkatkan kualiti model geoid di kawasan yang kecil. Lembah 

Klang yang berkeluasan 2,500 kilometer persegi telah dipilih sebagai kawasan 

kajian. Sebanyak 1,258 data gravity daratan, 878 data graviti bawaan udara, 3-arka 

model Misi Topografi Radar Ulang-alik (SRTM) dan Model Graviti Bumi 2008 

(EGM2008) serta 45 tanda aras telah digunakan untuk membangunkan Model Geoid 

Gravimetri Lembah Klang (KTHKVGM2020Grav). Pemilihan Model Graviti Global 

(GGM) dinilai berdasarkan data graviti daratan dan aras GNSS. EGM2008 adalah 

model terbaik untuk kajian ini masing-masing dengan ketepatan ±0.122m dan 

±0.851m. Manakala model SRTM pula dinilai berdasarkan kepada GNSS dan tanda 

aras dengan hasil ketepatan masing-masing ±3.117m dan ±3.024m. Set data graviti 

dinilai dengan sisa anomali berdasarkan 10 mGal unsur luaran yang menyebabkan 

181 graviti daratan dan 41 graviti bawaan udara dihapuskan. Menggunakan model 

Tscherching/Rapp dan kaedah kolerasi, nilai permasalahan sempadan Lembah Klang 

untuk varians isyarat dan hingar pada EGM2008 ditetapkan pada 10,800 darjah 

maksimum. Justeru itu, had atas bagi optimum EGM2008, M dan had atas parameter 

pengubahsuaian, L adalah 2,190 darjah maksimum. Telungkup, 0 bagi kawasan 

kajian ialah 0.1 darjah sebagai bias minimum dan varians ralat, 10 mGal anomali 

graviti daratan, ∆g. Semua dataset telah digrid menggunakan kaedah Kriging dengan 

menampal nod yang merangkumi interpolasi sel.  Selepas pembetulan, anggaran 

ketinggian model geoid KTHKVGM2020Grav masing-masing di antara -5.011m dan 

3.998m. Model geoid KTHKVGM2020Grav telah dinilai dengan 45 stesen aras GNSS 

dan memperolehi ketepatan ±11mm. Sementara itu, model geoid 

KTHKVGM2020Grav berjaya dipadankan ke dalam Datum Tegak Geodesi 

Semenanjung Malaysia (PMGVD) menggunakan 35 stesen aras GNSS selepas 

dikolerasikan dengan empat parameter transformasi.  Model geoid geometri Lembah 

Klang (KTHKVGM2020fit) berjaya dihasilkan dengan ketepatan sehingga ±5mm. 

Kajian ini menunjukkan bahawa model geoid yang dibangunkan menggunakan 

pendekatan KTH memberikan rujukan menegak yang lebih berkualiti berbanding 

kaedah lain terutamanya untuk kawasan kecil seperti Lembah Klang. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Over the years, the development of the Global Navigation Satellite System 

(GNSS) technology has become more vital for surveying purposes compared to the 

spirit of levelling. The use of GNSS technology requires many workforces, time-

consuming and quite expensive, compared with the spirit leveling accuracy is better 

than GNSS levelling (Okeke et al., 2017; Jamil, 2011).  The spirit levelling process 

requires a local vertical datum height with high accuracy of mean sea level (MSL). 

At the same time, the use of GNSS technology for levelling and ellipsoid height (h) 

is not reliable for surveying due to disturbing masses, particularly on topographic 

surfaces.  The GNSS ellipsoid height (h) is related to geoid height (N) and 

orthometric height (H) (Erok and Literacy, 2004). Thus, in order to obtain accurate 

geoid model, precise orthometric elevation is required.  It is a challenging for most 

developing countries to use the geoid model as the national vertical datum.  

Therefore, Malaysia has developed a geoid modelling called MyGEOID as the 

country‟s vertical datum (DSMM, 2005; Jamil, 2011; Jamil, 2017). 

Malaysia has developed a wide area of geoid modelling called MyGEOID in 

2004.  The model consists of the West Malaysia Geoid Model (WMGEOID04) and 

East Malaysia Geoid Model (EMGEOID05).  Both regional geoid models developed 

with the remove-compute-restore (RCR) method (DSMM, 2005). Apart from that, 

other countries developed their own national geoid model.  This includes Saudi 

Arabia (Zaki and Mogren, 2021), Khartoum, Sudan (Abdalla and Green, 2016), 

South Korea (Lee, 2017), Tanzania (Mayunga, 2016), Turkey (Kilicoglu et al., 

2011), Egypt (Saadon et al., 2021) and Japan (Kuroishi, 2000), each with their own 

national vertical datum.  In this regard, Malaysia again developed a Height 

Modernization System (HMS) project in the Klang Valley area in 2008 using the 
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RCR method.  The HMS project was vital, since it minimise erroneous National 

Geodetic Vertical Datum (NGVD) information and is relevant for better geoid 

modelling (DSMM, 2012).  The significance of the HMS project reduced erroneous 

from several factors, including sparsely gathered data, subsidence, and rebound. 

Recently, another two (2) famous approaches were used to determine geoid 

modelling in the world.  For instance, the least-square modification of stokes‟ 

formulae with additive correction (LSMSA) called the Royal Institute of Technology 

(KTH) approach and the University of New Brunswick (UNB) approach using 

stokes‟ Helmert methodology.  The KTH method employs complete gravity anomaly 

(Sjoberg, 1986; 2003c) and combined additive corrections estimators. KTH approach 

computes additive corrections with combined direct and indirect effects, such as 

topography correction, in a simple manner (Sjoberg, 2003c; Kiamerh, 2006b). The 

computation of the KTH approach was flexible and easy to update on whatever new 

dataset, mainly terrestrial data (Sjoberg and Bagherbandi, 2017b).  Thus, the KTH 

approach is essential for area that lacks terrestrial datasets and is difficult to access, 

such as a mountain area (Abbak, 2020).  Meanwhile, compared to other methods, the 

KTH approach was available to minimise the erroneous; particularly the terrestrial 

dataset (Sjoberg and Hunegnaw, 2000), and terrestrial gravity data fully truncates 

gravity anomaly in terms of boundary value problem (BVP) (Sjoberg and Hunegnaw, 

2000). 

 The KTH approach is often used by abroad countries to develop as national 

or local geoid models as vertical references.  For instance; Sudan (Abdalla and 

Fairlead, 2011), New Zealand (Abdalla and Tenzer, 2011), Uganda (Sjoberg et al., 

2015), Moldava (Danila, 2012), Greece (Daras, 2008), and Poland (Kuczynska-

Siehien et al., 2016).  However, in Malaysia only a few numbers of geodesy 

researchers use the KTH approach to develop their geoid models.  For example, the 

Peninsular Malaysia seamless gravimetric geoid model was developed without using 

the medium wavelength frequency of the airborne gravity dataset (Sulaiman, 2016).  

Other than that, regional geoid modelling in northern Peninsular Malaysia was also 

developed.  The model includes the use of marine and airborne gravity datasets 

(Pa‟Suya et al., 2018).  Indeed, both geoid models developed using the KTH 
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approach were not excellent as RCR method.  However, as previously stated, the 

KTH has its advantage and not every geoid model developed fit to the same 

parameter. 

Therefore, the need to determine the best geoid parameter for a small area 

such as Klang Valley area using the KTH approach for further investigation.  It is 

entirely significant for Klang Valley gravimetric geoid model related to local datum 

as well.  Therefore, a suitable geoid modelling that is dependent towards a quality 

dataset and experience of processing (Verge, 2018), error variance of terrestrial 

gravity data, capsizes, upper limit modification especially for a small area such as 

Klang Valley. 

1.2 Problem Statement 

For the past years, Malaysia managed to develop two geoid models with 5 

centimetres level accuracy using the remove-compute-restore (RCR) method.  In 

2008, Department of Survey and Mapping Malaysia (DSMM) developed Klang 

Valley geoid model under the Height Modernisation System Project using the RCR 

method.  The Klang Valley geoid modelling provided with 3 centimetres of level 

accuracy.  However, in 2016, the Peninsular Malaysia geoid model has an accuracy 

of 14.2 centimetres by optioning the KTH approach (Sulaiman, 2016).  Meanwhile, a 

regional Northern Peninsular Malaysia geoid model called the NGM17 was also 

developed and obtained 27 centimetres in accuracy using the KTH approach 

(Pa‟Suya et al., 2018).  Both geoid model accuracy is lower than the existing geoid 

model that uses the KTH method.  Therefore, procedure of computation that‟s 

between the RCR or KTH methods has no respective advantages except through 

scrutiny process for the datasets used. 

In practice, the RCR method was a difficult task to understand and seen as 

complicated computation compared to the KTH approach (Sjoberg, 2003c).  

According to Varge (2018), the quality data strategy determines optimal and 

essential geoid model results.  There has recently been no one, either locally or 
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internationally, who has developed geoid modelling with a small area using the KTH 

approach. The study assumes that geoid modelling as a vertical datum in a small area 

is essential if the dataset is well managed, particularly in the Klang Valley area with 

approximately 50 kilometres by 50 kilometres.  Theoretically, a small area was easy 

to manage with any newly updated dataset with the KTH approach.   

 

Klang Valley was exposed to earthquake areas such as tsunami on 26
th

 

December 2004, 28
th

 March 2005, and 12
nd

 September 2007 at Sumatra, Indonesia, 

with 9.2, 8.7, and 8.4 magnitudes, respectively (Borrero et al., 2009).  Another 

tsunami sequence occurred on 28 September 2018 at Sulawesi with 7.5 magnitudes 

(Maya, 2018).  All the natural disasters could cause movement over the Sundaland 

plate (Simons et al., 2007) and cause land displacement until 10 centimetres 

magnitude for 400 kilometres radius (Jaffar et al., 2019).  Indeed, Malaysia is 

considered a free zone from climate-related disasters (Rahman, 2018).  Meanwhile, 

datasets in multi-format from different platform with optimal accuracy are essentially 

challenging to handle.  For this regard in this study, the small changes due to natural 

disasters in particular small areas and rapid growth in the developing regions such as 

Klang Valley supposedly available to obtain an accurate vertical datum within a 

short period and frequently updated at all times. 

 

The gravimetric geoid was developed using a long-wavelength frequency 

global Geopotential model (GGM) to determine a local geoid model directly related 

to the lack of information from gravity anomalies.  The gravity anomaly from the 

empirical ground was estimated with covariance function.  The difference in errors 

between satellite and ground would affect an error called sea surface topography 

(SST) and cause a circulation error (Barzaghi et al., 2009).  As result, a research must 

be conducted to determine whether the long-wavelength frequency GGM has an 

effect on a small area. Meanwhile, if terrestrial gravity measurements were sparce, 

GGM data from satellites provided better information with insufficient coverage.   

A benchmark used to fit relevant gravimetric geoid to the local datum and 

mean sea level (MSL) using water tide gauge are observed with period 18.6 years.  

Within 18.6 years, several wind stress, storm, and the atmosphere changed (Pugh, 
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1987) and enacted the inaccurate record information for tide gauge zero frequency 

situations (Ardalan and Safari, 2005).  However, in Peninsular Malaysia, tide gauge 

observations were based on tidal records from 1984 to 1993 (DSMM, 2005).  It‟s 

shorter than 18.6 years from a complete cycle lunar.  The errors of changing and tide 

gauge observation information shorter than 18.6 years were caused result in MSL as 

well.  Thus, fitting benchmark (BM) to a local datum, referring to the MSL and 

related to gravimetric geoid within a small area corresponded to fitted geoid 

modelling. Therefore, ideal transformation parameters for small areas particularly 

must be referred and determined in order to achieve optimal accuracy of geoid model 

for mapping purposes. 

1.3 Research Question 

Some research questions were addressed to highlight the main idea for this 

study which includes: 

i. What is the ideal dataset used to develop a precise Klang Valley geoid model? 

ii. Does the Klang Valley geoid model utilise the KTH approach is a better than 

option using the RCR approach, even if it covers small area? 

iii. How to refine the dataset selection for the optimal parameter to construct 

Klang Valley geoid model either gravimetric and fitted geoid modeling? 

1.4 Aim and Objectives 

This study aims to improve the existing local geoid model for the Klang 

Valley area.  There were three main objectives as below: 

i. To identify the best geoid parameters for Klang Valley geoid modelling.  

ii. To develop a precise local gravimetric geoid model in Klang Valley. 

iii. To produce a local fitted geoid model in Klang Valley. 
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1.5 Scope of Study 

The scope of this study is to improve the existing Klang Valley geoid model 

using the KTH approach. 

1.5.1 Study Area 

This research focus on a small area in Klang Valley, that is 50 kilometres 

squares as illustrated in Figure 1.1.  This study will look into developing the Klang 

Valley geoid model, including cap size further to 0.3º to reduce discrepancy and 

optimise cap size value in the KTH method.  In addition, Klang Valley geoid 

modelling was designed with good performance accuracy for various land surveying 

activities and geodetic environments under the Height Modernization System project 

(DSMM, 2012).  Thus, this area was selected for this research. The Fast Fourier 

transforms (FFT) or least-squares collocation (LSC) method will be used to compare 

the existing geoid modelling under RCR approach development with the model 

developed in this study using KTH method. 

1.5.2 Dataset 

Within this research, five types of datasets are used to produce vertical 

references for Klang Valley. 

1.5.2.1 Gravity Dataset 

 There are two types of gravity datasets involved; terrestrial gravity 

and airborne gravity datasets.  Both gravity datasets were obtained from the National 

Gravity Database of the Department of Survey and Mapping (DSMM).  Those data 

are verified through fieldwork by DSMM using Ortocor software.  There are 1,439 

terrestrial gravity and 919 airborne gravity datasets used on this study.  The gravity 

datasets cover 50 by 50 kilometres of square area include approximately 33 



7 

kilometres capsize.  It‟s seeking to truncate drawbacks of geoid undulations nearby 

and obtain reference information as well as beneficial for future local geoid 

modelling nearby developing areas.   

 

 

 

 

Figure 1.1 Klang Valley Study Area (Modified from Dziauddin et al., 2013) 

 1.5.2.2 Global Geopotential Models (GGM) 

There are twelve (12) long-wavelength frequency global geopotential models 

(GGM) used in this study (Table 1.1).  The GGM models were downloaded from the 

International Centre for Global Gravity Field website; http://icgem.gfz-potsdam.de 

(Ince et al., 2019).  All GGMs models engaged were based on the Challenging Mini 

Satellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRAVE), 

http://icgem.gfz-potsdam.de/
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and Gravity Field and Steady-state Ocean Circulation Explorer (GOCE) satellite 

orbit data (Doganalp, 2016).  The models were evaluated by GNSS levelling and 

gravity datasets.  According to Kiamehr (2010), the long-wavelength frequency 

GGM model is essential for areas that is lacking dataset and challenging area access. 

Table 1.1 List of Global Geopotential Model (GGM) Used 

MODEL 
DATA 

TYPE 
DEGREE YEAR REFERENCE 

GGM05S S 240 2015 Bettadpur et al., 2015 

GGM03C S 250 2012 Mayer-Gurr et al., 2012 

GOEOO1S S 220 2010 Pail et al., 2010 

GOGRA04S S 230 2014 Yi et al., 2013 

GOSG01S S 220 2018 Xu et al., 2017 

DGM-1S S 250 2012 Farahani et al., 2013 

EIGEN-6C4 S, A, G 2190 2014 Forste et al., 2014 

XGM2016 S, A, G 719 2017 Pail et al., 2017 

EIGEN-5C S, A, G 359 2010 Bruinsma et al., 2010 

GGM05C S, A, G 360 2015 Ries et al., 2016 

EGM2008 S, A, G 2190 2008 Pavlis et al., 2008 

GIF48 S, A, G 360 2011 Ries et al., 2011 

 

S = Satellite     A = Altimetry     G = Gravity 

1.5.2.3 Global Digital Elevation Models (GDEM) 

Numerous digital elevation models (DEM) are accessible online from the 

International DEM services website.  The study uses DEM model of Shuttle Radar 

Topography Mission (SRTM), Global 30 Arc Second Elevation (GTOPO30) and 

Global Land One-kilometer Base Elevation (GLOBE) model.  The global DEM 

model was closely related to the KTH method, particularly topography surface 

correction and continuous downward correction (DWC) effects.  All GDEM models 

selected for this study are space between 500 metres to one (1) kilometre.  The DEM 

datasets used for this study is tabulated in Table 1.2. 
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Table 1.2  List of GDEM Used 

GDEM ARRAY DATA SOURCES 

SRTM 30” https://earthexplorer.usgs.gov/ 

GTOPO30 30” https://gtopo30-science.d1r.de/ 

GLOBE 30” https://ngdcnoaa.gov/mgg/topo/globe.html 

 

1.5.2.4 Levelling Dataset 

 

 

 

 

 

 

Figure 1.2 The Distribution of GNSS Levelling over the Study Area 

This study will include fifty-two (52) benchmarks in the Klang Valley area. 

The benchmark levelling dataset was obtained from the DSMM database and with 

root mean square (RMS) that is lesser than 3 millimeters per kilometre in distance 

(0.003K). Figure 1.2 depicts a levelling benchmark for this study.  After 

investigation, the levelling datasets could fit the gravimetric geoid model to 

Peninsular Malaysia Geodetic Vertical Datum (PMGVD) local datum.  Meanwhile, 

the benchmarks involved with GNSS levelling were evaluated with GGM and DEM 

model for the Klang Valley areas. 
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1.5.3 Analysis of Outcome 

This research study will be divided into four phases.  The first phase is cross-

validation on investigating and evaluating all of the datasets including gridding 

scheme process and selecting the best method as well as model will be used.  The 

cross-validation is performed on the spherical surface of the boundary value problem 

(BVP) for Klang Valley areas using the best gridding scheme. 

The second phase included determining signal and noise degree variants 

during data acquisition, specifically for short or long wavelength frequency datasets. 

Meanwhile, this determination was seeking to free air and Bouguer anomalies in 

gravity data for a geoid undulation.  The second phase also involves analysing the 

best optimum modification parameters in the least-squares sense of Klang Valley.  

The optimum parameters include an upper limit of modification GGM (M) and 

terrestrial gravity (L), error variance of terrestrial gravity anomaly (∆g) as well as 

capsize (0).  Again, this phase involves additive correction estimators with 

combined direct or indirect calculation.  In the KTH approach, the additive 

corrections include combined topographic, atmosphere effect, downward continuous, 

and ellipsoid effect (Sjoberg, 1986).  The KTH method‟s primary goal is to reducing 

erroneous least-squares estimates for geoid height springing, terrestrial gravity, and 

geopotential coefficients with greater simplicity and reliability. The KTH approach 

with rigorous refinement sought to optimise the matching with several error sources 

or decrease erroneous for undulation geoid height.   Meanwhile, it fully uses and 

utilises gravity anomaly to interpolate and integrate data with a simple solution 

(Sjoberg and Hunegnaw, 2000; Sjoberg, 1986; 1991; 2003c). 

The third phase involves analysing and assessing Klang Valley‟s gravimetric 

geoid height and fitted geoid model accuracy from an undulation height.  

Simultaneously, the best transformation parameter will be selected to fit the Klang 

Valley geoid model with local datum using verified GNSS levelling. 

The fourth phase involves with the results and uses optimum strategy to 

engage the Klang Valley geoid model.  It includes strategic gathering of all the 
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datasets, determining the noise/signal, the best modification parameter, additive 

correction estimators using least-squares stokes‟ modification, Klang Valley 

gravimetric and fitted geoid assessment.  The results were aided by KTH Geolab, 

Microsoft Excel, Surfer, Global Mapper, Ortocor, Geo-com software, and Gravsoft.  

All these software is essential and able to mobilise computations and presentation of 

Klang Valley geoid model outputs. 

1.6 Significance of Research 

The best parameters of the geoid model are best achieved if the dataset is 

strictly refined.  Since there are many datasets available online, additional surveying 

data were easily obtained.  Many Global Geopotential Model (GGM) and Global 

Digital Elevation Model (GDEM) are accessible online as well.  Similarly, the 

complex area is difficult to access such as mountain and forest areas are lacking 

terrestrial dataset, which can be obtained with rigorous refines.  Meanwhile, a small 

area geoid modelling is essential to develop and easy to handle with the best vertical 

datum for that particular area lack of terrestrial datasets.  Aside from that, small 

locations with local defects are not propagated to the surrounding area. As a result, 

any individual or organisation capable of creating a geoid model of a small area that 

can be utilised as a local vertical datum. 

Consequently, KTH approach employs complete gravity anomalies and 

parameters with additive Stokes' integral corrections, combined in direct or indirect 

corrections.  KTH approach was simple to implement and dealt well with both new 

and large datasets and promised to be far superior in terms of geoid modelling 

computation as well (Kiamehr and Sjoberg, 2010). 

Indirectly, the geoid model is easy to develop with the KTH approach since it 

would positively impact the implementation of GNSS technology.  It is well known, 

GNSS technology was the most popular task for recent surveying field in the 

geodetic environment.  The ellipsoid height (h) is derived from GNSS observation 

while the geoid height (N) is obtained through the geoid model developed.  
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Simultaneously, the orthometric height (H) on the topographic surface is generated 

as well, which presents the geoid surface (Heiskanen and Moritz, 1967; Roman et al., 

2010; Gwaleba, 2018).  Therefore, corresponds to the study of relationship on geoid 

height and vertical datum better than one (1) centimeter related with Peninsular 

Malaysia Geodetic Vertical Datum (PMGVD) as a local datum.  Thus, the GNSS 

technology will obtain plenty of benefits by installing fitted geoid modelling. 

1.7 Research Methodology 

The methodology of this research within this study is divided into four (4) 

phases as illustrated in Figure 1.3. 

1.7.1 Phase 1: Data gathering and validation 

 

Phase one includes an overview of the existing or previous geoid modelling 

that has been developed in either a local or foreign country. Meanwhile, several 

geoid models approach, such as the KTH, RCR, and UNB covered broad areas, 

regionals, and local areas.  Unfortunately, the author found that developing a geoid 

model with a small area using the KTH approach is still not capable. 
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Figure 1.3 General Framework of Research Methodology 
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There were 1,439 terrestrial gravity datasets endorsed by DSMM and free of 

masses disturbing as well as free-air gravity anomaly and also Bouguer anomaly 

order.  This study involved 1,439 terrestrial gravity datasets in first-class order that 

has passed the tolerance.  Meanwhile, the study used 919 airborne gravity datasets 

without any free of mass disturbing for Klang Valley geoid modelling.  

Simultaneously, the study also involved 52 GNSS levelling datasets from DSMM‟s 

database, which is essential evaluate for the GGM and GDEM model.  GNSS 

levelling data from DSMM‟s database were endorsed and used to engage for fitting 

Klang Valley gravimetric geoid modelling to the PMGVD local datum.  Meanwhile, 

12 GGM and 3 GDEM datasets was involved in this study.   

1.7.2 Phase 2: Develop Klang Valley gravimetric geoid model 

All datasets gathering were gridding using the KTH approach, which involves 

least-squares modification Stokes‟ formula, additive corrections procedure and was 

assessed by GNSS levelling dataset.  The long-wavelength frequency of the GGM 

and GDEM model are bias and noise variants.  Thus, fixed-parameter related with 

long-wavelength frequency model was applied instead of gravity anomaly degree 

variance, cn, geopotential harmonic error degree variances, dcn, modification 

limitation of M=L, capsize, º and error variance of terrestrial gravity anomaly, ∆g 

(Wu, et al., 2020; Klees et al., 2019) in the computation procedure.  Meanwhile, the 

procedure is also implemented with additive corrections estimator, called combine 

topography correction, downward continuous correction, atmosphere correction, and 

ellipsoidal correction to approximate undulate geoid with least-squares parameters.  

It is in order to harmonic Klang Valley geoid undulation of height spherical surface.  

1.7.3 Phase 3: Fitting Klang Valley gravimetric geoid model to a local datum 

The third phase focuses on fitting Klang Valley gravimetric geoid model with 

Peninsular Malaysia Geodetic Vertical Datum (PMGVD), a local datum with a 
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refined benchmark.  The Klang Valley gravimetric geoid model was tested with a 

transformation parameter model as well. 

1.7.4 Phase 4: Results, analysis and conclusion 

The fourth phase involves analysis of the results and conclusion.  All the 

outcomes of research and assessment on KTH approaches were analysed as well.  

The assessment include data gathering, best parameter modification using least-

squares modification stokes formula for Klang Valley small area and assessment of 

accuracy Klang Valley gravimetric geoid and the fitted geoid.  Finally, a brief 

conclusion is made the findings and either or not this research has achieved all the 

objectives, as mentioned earlier in this chapter. Meanwhile, some recommendations 

for future studies on designing a better local geoid model, particularly in a small 

area, will be made as well. 

1.8 Structure of Thesis 

The structure of the thesis is organised of five chapters as follows. 

Chapter 1 describes the introduction, aim and objectives, problem statement, 

and significance of the study. 

Chapter 2 reviews the literature related to the KTH approach applied in other 

countryand abroad, either theoretical or empirical aspects.  Review on RCR and 

UNB approach was presented as well.  Beside from that, this chapter also described 

the history of geoid model development in Malaysia and the implementation of 

gravity data collection. 

Chapter 3 presented the research methodology for this study.  It began with 

choosing the best parameter for data acquisition, particularly with long-wavelength 
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frequency satellite space data and modification parameters.  Subsequently, it also 

involves processing to truncate data error with additive effects and ends with the 

fitting Klang Valley geoid model to the local datum procedure. 

 Chapter 4 discusses results and analyses for every part of evaluations.  The 

goal of this chapter was to go over each step of the output and decision-making 

process for the best Klang Valley geoid model. 

Finally, Chapter 5 presented a conclusion and recommendations for future 

research along with other efficient approach that can be applied to other fields. 
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