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ABSTRACT 

Rainfall is one of the prominent parameters in the hydro-climatic process, it is 

typically measured by using gauge which is limited to station samples and inherent 

systematic error with the requirement for regular instrument calibration. To overcome 

such limitations, the Tropical Rainfall Measuring Mission (TRMM) and the Global 

Precipitation Measurement (GPM) which are remote sensing precipitation satellite 

missions, have been used at a regional scale to provide reliable precipitation estimates 

over large spatial extent within the spatial resolution of 0.25o and 0.1o respectively. 

However, it is difficult to spatially match with the point-based gauge data at an 

acceptable local scale and thus, gives a poor empirical relationship. Previously, spatial 

downscaling algorithms using simple statistical models were devised by spatially 

correlating them with normalized difference vegetation index (NDVI), and digital 

elevation model (DEM) data at the higher spatial resolution, but the outcomes were 

unsatisfactory due to goodness of fitting dependent and spatial non-stationary 

influence. As such the aim of this research was to apply the Geographically Weighted 

Regression (GWR) method which put forward local regression with spatial non-

stationary modelling to downscale both satellite precipitation data by showing the 

cross-correlation between NDVI and DEM data at high spatial resolution. The 

objectives were to develop a local downscaling method using multi and single variables 

to estimate rainfall at 1km spatial resolutions by using GWR modelling based on non-

linear regression method; to assess the impact of spatial variability on local downscaled 

rainfall algorithm in the different model considering the different spatial resolutions; 

and to evaluate the quality of downscaled rainfall data with rain gauge measurements 

in differentiating the light and heavy rainfall. GPM, TRMM, Moderate Resolution 

Imaging Spectroradiometer (MODIS) NDVI, Shuttle Radar Topography Mission 

(SRTM) DEM and ground gauge data were applied over Kelantan area for three 

consecutive periods from October 2013 to December 2016. Polynomial Regression 

(PR) and GWR were employed to downscale annual and monthly satellite precipitation 

from 25km and 10km to 1km spatial resolutions. Ground gauge data were used to 

validate the accuracy of light and heavy rainfall at below and above 200 mm, 

respectively. The GWR model improved the precipitation accuracy obtained by GPM 

as compared to TRMM by about 40% due to better spatial resolution pixels. PR models 

were limited for higher spatial non-stationary exhibited by homogeneous vegetated 

areas at low elevation and heterogeneous elevation. GWR had the least impact of the 

spatial non-stationary with 30% reduction of Root Mean Square Error (RMSE) 

similarly obtained by PR. Light rainfall was evident along the coastal line and the heavy 

rainfall was concentrated in the vigorous vegetated areas around the Kelantan area. 

This study proves that the GWR downscaling approach is suitable for tropical rainfall 

types in Kelantan and cross-correlating it with other rainfall related geo-parameters 

such as vegetation index and elevation.   



vii 

ABSTRAK 

Kajian pemendakan adalah salah satu daripada parameter penting dalam proses hidro 

iklim dan biasanya diukur dengan menggunakan tolok ukur dan terhad pada sampel stesen dan 

kesalahan sistematik yang wujud dengan keperluan untuk penentukuran instrumen biasa. 

Untuk mengatasi had batasan tersebut, Tropical Rainfall Measuring Mission (TRMM) dan 

Global Precipitation Measurement (GPM), yang melakukan misi satelit pemendakan 

penderiaan jarak jauh, telah digunakan pada skala wilayah untuk memberikan anggaran hujan 

yang boleh dipercayai melebihi luas ruang dalam resolusi spatial masing-masing pada 0.25o 

dan 0.1o. Walau bagaimanapun, adalah sukar untuk menyesuaikan spatial dengan data tolok 

berasaskan titik pada skala tempatan yang dapat diterima dan dengan itu memberikan 

hubungan empirik yang tidak baik. Sebelum ini, algoritma penjejakan ruang spatial 

menggunakan model statistik sederhana dirancang dengan menghubungkannya secara spatial 

dengan Indeks Normalized Difference Vegetation Index (NDVI) dan Digital Elevation Model 

(DEM) pada resolusi spatial yang lebih tinggi, tetapi hasilnya tidak memuaskan kerana 

kebaikan sesuai bergantung dan tidak berpusat pada ruang. Oleh itu, tujuan kajian ini adalah 

untuk menerapkan kaedah Geographically Weighted Regression (GWR) yang mengemukakan 

regresi tempatan dengan pemodelan tidak berpaut ruang untuk mengecilkan saiz data curah 

hujan satelit dengan menunjukkan korelasi silang antara data NDVI dan DEM pada resolusi 

spatial tinggi. Objektifnya adalah untuk membangunkan kaedah penskalaan tempatan 

menggunakan pemboleh ubah pelbagai dan tunggal untuk menganggarkan hujan pada resolusi 

spatial 1km dengan menggunakan permodelan GWR berdasarkan kaedah regresi bukan linear; 

untuk menilai kesan kebolehubahan spatial pada algoritma hujan tempatan dalam model yang 

berbeza dengan mempertimbangkan resolusi ruang yang berbeza dan untuk menilai kualiti data 

hujan dalam skala yang kecil dengan pengukuran hujan untuk membezakan hujan renyai dan 

lebat. GPM, TRMM, Spectroradiometer Imaging Moderate Imaging (MODIS) NDVI, DEM 

Shuttle Radar Topography Mission (SRTM) dan data tolok darat digunakan di Lembangan 

Kelantan selama tiga tempoh pengukuran berturut-turut dari Oktober 2013 hingga Disember 

2016. Regresi eksponen (ER) pelbagai linear dan GWR digunakan untuk pemendakan satelit 

tahunan dan bulanan dari resolusi jarak 25km dan 10km hingga 1km. Data tolok darat 

digunakan untuk mengesahkan ketepatan hujan renyai dan hujan lebat masing-masing di bawah 

dan di atas 200 mm. Model GWR meningkatkan ketepatan kiraan hujan yang diperoleh GPM 

dibandingkan dengan TRMM kira-kira 40% kerana piksel resolusi spatial yang lebih baik. 

Model ER terhad untuk spatial bukan pegun yang lebih tinggi dipamerkan oleh kawasan 

vegetatif homogen pada ketinggian rendah dan ketinggian heterogen. GWR mempunyai kesan 

paling kecil dari spatial bukan pegun dengan pengurangan 30% Root Mean Square Error 

(RMSE) yang serupa diperoleh oleh Multi Linear Regression (MLR). Hujan renyai adalah 

bukti jelas di sepanjang pesisir pantai dan hujan lebat tertumpu di kawasan hijau tebal yang 

bertiup di sekitar Lembangan Kelantan. Kajian ini membuktikan bahawa pendekatan 

pengecilan saiz GWR sesuai untuk jenis hujan tropika di Kelantan dan saling mengaitkannya 

dengan geo-parameter yang berkaitan dengan hujan seperti indeks tumbuhan dan ketinggian.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Precipitation is one of the products of the water cycle where condensation 

takes place in the atmosphere and returns to the earth surface through the clouds. 

Precipitation takes many forms (drizzle, rain, sleet, snow, ice pellets, graupel and 

hail) and these all become the most crucial parameters for hydrological studies. As 

time went by, several techniques were developed that served as surrogates for 

obtaining atmospheric data and information, which are accurate in both spatial and 

temporal characteristics and eventually led to access key information that relates to 

the hydrological basin and enabling the prediction of extreme weather events such 

as flash floods and drought (Arnaud et al., 2002; Sarr et al., 2015; Vischel and 

Lebel, 2007).  

Rainfall is a primary source of water for agriculture and many other uses. 

There are three main characteristics of rainfall that are very important (its amount, 

frequency and intensity) and this is because the values of each vary from place to 

place, day to day, month to month and also year to year. A precise knowledge of 

these characteristics is essential in planning for the full utilization of the benefits of 

rainfall globally. This is done through the use of long-term measurements of daily 

rainfall, compiled over years, and getting from the measurements which are 

eventually used to predict trends of floods, droughts and climatic zones of potential 

evapotranspiration in many regions of the world. These kinds of measurements are 

the focus of the study in Malaysia using Kelantan as a case study after the 

assessment of the method of the measurement technique. The study area still applies 

the use of direct rainfall gauges and the aerial coverage is still poor as the gauge’s 

locations were selectively distributed only at flat regions with large radius distances 

between each other. For regional-scale consideration, it is difficult to apply direct 
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measurement techniques and obtain reliable information with rain-gauges, but 

easier when remote sensing and in-situ measurement are applied in integration. The 

in-situ is comprised of rain-gauges and Disdrometer. The outcomes are usually 

accompanied by biases that pose uncertainties for accurate environmental studies 

and analysis.  

The use of remote sensing data gives rise to consistent data and also 

provides the spatial heterogeneity of the data distribution for the region under 

consideration. Since 1997, the Tropical Rainfall Mission (TRMM) has revealed 

knowledge and the use of space-borne precipitation radar information that gave rise 

to 0.25˚ x 0.25˚ resolution that covered the tropics from 50 ˚ N-S at 3 hour time 

intervals (Chen et al., 2013). This particular application revealed that the visible 

and infrared data obtained for the study was used to estimate the precipitation based 

on the information obtained from the observation of the cloud top properties and 

correlated these measurements with ground-based radar measurements. Apart from 

the use of Radar information, other multi-satellite data could also be put to use, but 

care must be exercised so that minimum biases and errors are minimised as it is 

from them that an estimate could be made to calculate the amount of rainfall using 

the global regression model. Nevertheless, tropical application considering hourly 

rainfall data is quite difficult as explained by (Suzana & Wardah, 2011).  

In 2014, a newer model of the TRMM, Global Precipitation Measurement 

(GPM) sensor was launched and provided its data with a better resolution of 0.1 ˚ x 

0.1 ˚ degree capacity at every 30 minutes spatial coverage. This feat improved 

monitoring, prediction of weather, climate and precipitation. It has both active and 

passive sensors which together operate in Ku/Ka-band dual-frequency which 

became very useful for application even at microphysical studies. The frequency of 

Ka-band (35GHz) can contribute by integrating and removing other attenuations 

found in precipitation clouds. It also can identify, with high sensitivity, weak 

raindrops and snow. The minimum detectable rainfall rate in the high sensitivity 

mode is approximately 0.2mm/h (Seto & Iguchi, 2015). This new sensor technology 

implies that it is possible to combine the in-situ data obtained by the direct method 
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of measurement with that of the satellite remote sensing procedure to achieve 

reliable information on precipitation data (Sharifi et al., 2016a) 

1.2 Background of Study 

Rainfall is the precipitation in the form of water droplets of size between 

0.5mm to 7 mm. it can be classified into 3 classes which are light rain, moderate 

rain and heavy rain. The estimation of rainfall is basically in mm or inch unit which 

is being measured as total depth of rainfall over an area in one day. The instruments 

for measuring rainfall include rain gauges, snow gauges and various types are 

manufactured according to the purpose at hand. There can be substantial variation 

in rainfall amounts depending on whether the gauge applied is the type used by 

National Weather Services and if the measurements are of the same location. Some 

errors are inherited when the exposure of the rain gauge is not obstructed by 

vegetation, not truly vertical or blown off by wind gusts. There are point, aerial 

precipitation measurements with Radar, and those undertaken using Satellite image 

Data. The point measurements are not always well distributed, while the radar 

category makes use of the backscatters of the power of the returns of echo 

notwithstanding whether the area is flat or mountainous. This power of the echo 

returns is used to calculate the reflectivity factor Z. The Z is applied in an equation 

called Z-R to acquire the relationships that enable the determination of the rainfall 

rate. In some sensor products, 1-hour radar precipitation estimates are provided for 

an area of responsibility approximately 4 x 4 km square grid resolution. It is not 

easy to compile consistent radar data for large regions such as that provided by 

satellite data.  

Regional coverage of precipitation information is easier with satellite data 

because of the frequency in data archiving over a large area. Global and regional 

satellite sensing began with the TRMM (Chiu, 2002) with a spatial resolution of 

0.25˚. However, with the advent of a new precipitation satellite mission called 

GPM,  the accuracy of results has greatly increased to 0.1˚ every 30 minutes (Zhan 

et al., 2018). The new sensor can also measure light and heavy rainfall accurately 
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at both local and regional coverage. And more recently, remote sensing and 

Geographical Information systems (GIS) have made it possible to have a new 

method of acquiring better analysis to estimate rainfall even in tropical 

environments (Jia et al., 2011;(C. Chen et al., 2015). The combination of satellite 

remote sensing and GIS technology has greatly enhanced the measurement 

accuracy of the precipitation (Boushaki et al., 2009; C. Chen et al., 2015), making 

it now possible to have a detailed characterization of the spatial distribution of the 

rainfall patterns and flood disaster prediction capacities. To incorporate 

precipitation information into the hydrological cycle, high-density rain gauge 

networks is a prerequisite to capture how heterogeneous are the components of 

hydrology. This study endeavours to downscale the aerial coverage to better 

accuracy of a 1x1km radius. 

There is a model of climatic is related to downscaling. The models which 

widely been used is called General Circulation Model (GCM) and Regional 

Climatic Models (RCM). However, these two models cannot be used directly as a 

tool to measure and retrieve the climate variabilities such as rainfall measurements. 

To use them in this capacity will require the information to be broken down by what 

is called downscaling. There are several methods of undertaking downscaling 

processes, most of them are statistical and each differs one from another by the level 

of extreme events (Jia et al., 2011; Juneng et al., 2010). The downscaling data is 

very crucial as an input in the hydrological model and has been widely used in 

climate studies. The procedure of this downscaled technique is to attempt to solve 

the gap between the mismatch of the resolution. Various models have been 

developed to propose the relationship between atmospheric parameters with rainfall 

precipitation, especially Digital Elevation Model (DEM) and Normalised 

Difference Vegetation Index (NDVI) in statistical downscaling. (Jeong et al., 2012) 

conducted a downscaling study using a multiple regression approach with the help 

of the Principal Component Analysis (PCA) technique. To determine the predictor 

and predictand, spatial correlation or Pearson correlation method can be used to 

select the appropriate sensible and realistic model. Presently, downscaling is used 

in improving the grid precipitation when a higher resolution environment parameter 

is absent. This approach is being conducted in the study area to strengthen the 
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relationship between rainfall and its variabilities with multi regression. This became 

necessary because previous assessment using TRMM products revealed poor 

correlation with gauge data due to poor detection of light rainfall, resulting 

generally in an underestimation of the total rainfall. As mentioned earlier, the higher 

spatial resolution rainfall data is essential for environmental studies, and it can be 

greatly improved by establishing the statistical model between precipitation and 

environmental factors (Jia et al., 2011).  

There have been the previous study made by (Amirabadizadeh et al., 2016) 

which applied the use of the statistical downscaling procedure to bridge the 

difference between spatial on-grid and sub-grid box methods in Peninsular 

Malaysia. However, the statistics used were the multi-scale type that revealed the 

relationship taken from observation of environmental predictors that led to the 

production of the multi-scale rainfall field (Fowler et al., 2007). Downscaling is a 

good procedure to obtain enhanced predictions even for local-scale data from a 

global scale. Generally, downscale is either linear, exponential or polynomial 

models. To get the correlation between gauge observation and satellite-based 

information requires other additional parameters in higher resolution to downscale 

the precipitation. (F. Chen et al., 2014a; S. Xu et al., 2015) studies have used 

Vegetation indices and topography information are the variables that have been 

widely used as an additive to downscale the TRMM rainfall products. The 

relationship between the parameters as dependent variables and the rainfall rate as 

independent variables is being established using multiple linear regressions. A 

study by Immerzeel et al. (2009) extended the multiple regression to the polynomial 

and exponential relationship to find the best fit correlation between NDVI and 

rainfall for environmental applications. To this end, the use of satellite observation 

has proved to be the most practical tool with which suitable models are determined 

for the measurement of the impact of downscaling rainfall on high-resolution maps. 

This research study showed the different varieties of rainfall rates between different 

models used to downscale the rainfall estimation.  
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1.3 Problem Statement 

Based on the background study, the issues can be highlighted as follows. 

 

GPM is a new mission that provides a better spatial resolution of 0.10˚ x 0.10˚ 

compared to the previous TRMM of 0.25˚ x 0.25˚ (300 x 300km2). To develop a 

location-based downscaling model that makes use of multi regression is different 

from using single and linear regression which could not provide the locality 

estimation accurately.  

 

Several authors have applied downscaling methodology, which involved 

interpolation and aggregation procedures to increase the spatial resolution of 

satellite-based precipitation predictions (Cheema & Bastiaanssen, 2012; S.-T. Chen 

et al., 2010; Quiroz et al., 2011). Today, many sources of geoscience information 

are used as supporting parameters to retrieve the rainfall measurements in higher 

spatial resolution in the downscaling process. Some of the information is extracted 

from NDVI, EVI, temperature and elevation data. All these parameters said having 

positive correlates with rainfall and other climatic data. So far most studies have 

applied the use of NDVI as a proxy for downscaling precipitation while others used 

regression analysis with spatial model parameters (Z. Duan & Bastiaanssen, 2013; 

Fang et al., 2013; Park, 2013). Thus, this study is taken GWR as an additional tool 

of the linear regression method in combining two possible parameters as a proxy of 

different locations.  

Kelantan, the study area, has a complex topography with spatial 

heterogeneity. This makes the rainfall pattern differ from one region to another and 

gives rise to heterogeneity spatial bias concerning the area and location covered 

which is required to be resolved to acquire accurate rainfall measurement with high 

resolution. Benefiting from the high spatiotemporal resolution and near-global 

coverage, satellite-based precipitation products are applied in many research fields. 

However, the applications of these products may be limited due to a lack of 

information on the uncertainties. it is crucial to quantify and document their error 

characteristics otherwise rainfall results will be either overestimated or understated. 
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Due to the measurements, the result will experience huge errors. To minimize those 

issues, the spatial downscaling with the potential model is chosen for this study.  

Previous satellite data such as the TRMM and Precipitation Radar (PR) 

product were used for an improved resolution to 1km by the downscaling procedure 

which used exponential regression and quadratic polynomial regression as 

explained by (Z. Duan & Bastiaanssen, 2013; Immerzeel et al., 2009). On the other 

hand, Fang et al. (2013) applied the use of meteorological parameters in multiple 

linear regression to fit the regression model of downscaling. Based on all these 

studies, it became clear that the fundamentals of downscaling are based on the 

regression model and the auxiliary variables. However, the regression model 

between the proxies used were all based on the assumption of spatial stationarity in 

the relationship which is still under research (Foody, 2003). Many studies (Bordoy 

& Burlando, 2014; Immerzeel et al., 2009; Jia et al., 2011; Quiroz et al., 2011; Shi 

& Song, 2015) have used TRMM as the primary satellite data to downscale the 

rainfall to finer resolutions.  Even though TRMM has operated for over 2 decades, 

it still has a limitation in detecting either very light or very heavy rainfall. It also 

could not measure light rainfall ranging  (<250mm/month) (Friesen et al., 2017; Shi 

& Song, 2015; Zhan et al., 2018). Based on (Liu et al., 2018), stated annual 

precipitation derived from original TRMM products is overestimated as compared 

to observed precipitation during the 2001–2014 period. Overestimation and 

underestimation are more likely to occur in the relatively wet and relative dry 

regions, respectively after the data are calibrated with observed precipitation data. 

Estimating light rainfall is critical to the earth ecosystem due to the high occurrence 

rate. For heavy rainfall, TRMM product such as TMPA over detects heavy rainfall 

events. As stated in the (Prakash et al., 2016) study, he stated GPM IMERG shows 

promising results in the rainfall model especially in detecting light rainfall. Due to 

the problems mentions above, this study is designed to test how the GWR model 

can tackle the spatial stationary issue and was expected to give a better correlation 

between the rainfall and auxiliary variables.  As was highlighted by NASA 

approaches, to acquire reliable information of light precipitation is by the use of 

GPM at both regional and local scales (Wei et al., 2018).  
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1.3.1 Research Questions 

This research study will be able to answer the following research questions; 

 

(a) How can a local downscaling method be developed that applies multi 

and single variables to estimate rainfall at the spatial resolution of 1 km 

? 

(b) How can the assessment of the impact of spatial variabilities of rainfall 

be made on a local rainfall parameter using downscaling? 

(c) Which approach best evaluates the quality of downscaled rainfall 

products to differentiate light and heavy rainfall?  

1.3.2 Research Objectives 

This study aims to downscale the satellite-based rainfall (GPM) grid data to 

1 km resolution using the appropriate statistical technique over the Kelantan state. 

The objectives of this study are:  

(a) To develop a local downscaling method using multi and single variables to 

estimate rainfall at 1 km spatial resolutions by using linear regression 

method (GWR)  modelling based and non-linear regression method.  

(b) To assess the impact of spatial variability on local downscaled rainfall 

algorithm in the different sensors considering the different spatial 

resolutions from TRMM (25km) and GPM (10km). 

(c) To evaluate the quality of downscaled rainfall data with rain gauge 

measurements in differentiating the light and heavy rainfall based on the 

residuals value. 



 

9 

1.4 Significance of the Study 

Satellite-derived precipitation information has been used widely to achieve 

an accuracy of 25km spatial resolution. However, this resolution is not good enough 

for practical hydrological studies as well as for forecasting. The spatial and 

temporal reliable information of precipitation is crucial for accurate modelling for 

agriculture and floods. Accurate knowledge of the amount of annual and monthly 

precipitation with high reliability is crucial for mitigating strategies of natural 

hazards and disaster risk reduction. Furthermore, this study increases our 

understanding uses of rainfall for hydrology and water resource management 

especially for regions without sufficient ground rain gauges. 

The model in retrieving the rainfall measurements derived parameters can 

be established as a tool for flood and weather forecasting modelling as it can provide 

critical information of a region where the gauge information is unavailable, 

especially in the mountainous and rural areas. The information of the accurate 

amount of heavy and light rainfall at high spatial resolution (1km) from this 

approach could be used to provide hazard warnings for areas that lie at risk. 

Warnings could be issued with greater accuracy and in a timelier manner to enhance 

environmental management and possibly save lives. Therefore, this study is very 

useful in analysing the relationship between the rainfall and proxy parameters 

chosen in downscaling modelling since rainfall precipitation is an essential part of 

the hydrological cycle, flood monitoring and also in disaster management study.    

Due to rapid urbanization, which sometimes involves reclamation exercises 

of land from the sea and the issues of continuous rainfall, especially during the 

monsoon seasons, flood events may likely occur. This is why the addition of 

topographic elevation data used in this study is another variable that has the 

potential to help in improving the water tides management and building of 

embarkments for water volume study. This study is expected to be of great benefit 

to the public as well as decision-makers under the National Policy on the 

Environment and Disaster Management where they can derive useful information 

of the present and forecasting of the rainfall and flood event in the cities as well as 
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the rural areas through the development of satellite rainfall indicator.  From the 

study, future studies on the estimation of rainfall at very high resolution can be 

accurately estimated. Accurate forecasting of rainfall is always demanded by 

related agencies as it is one of the most important issues in hydrological research. 

Rainfall forecasting involves complex data patterns, either linear or non-linear.  

1.5 Study Area 

Kelantan state is located on the east coast of Malaysia covering a total area 

of 1500 km2. This region receives a significant amount of rainfall throughout the 

year due to its geographical location. The measurements record is based on the 

direct gauge measurements distributed at 60 stations around the state. This data is 

controlled by the Department of Irrigation Drainage (DID). Kelantan experiences 

the North-East Monsoon, which usually hits the East coast around November – 

February. The monsoon comes with non-stop heavy rain and sometimes causes 

episodes of flooding events (Sabena, 2012). As a consequence of frequent 

precipitation, the region has a high percentage of vegetation cover, estimated to 

cover an area of about 862,196 hectares. The predominant land use is agriculture, 

paddy and mixed agriculture. The rainfall distribution in Malaysia is highly 

dependent on wind flow. The local climates are influenced by the mountain ranges 

throughout and climate changes at the highland, lowland and coastal regions. 

Temperature ranges between (23-320C) and precipitation range from 10-30 

centimetres on monthly estimates. Figure 1.1 shows the study region with a 

distribution of rain gauge station overlay with the Digital Elevation Model (DEM) 

of Kelantan. 
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1.6 Scope of the Study 

To achieve the objectives, of the study, the first part focuses on the retrieval 

of high spatial rainfall data using NDVI and DEM as the geospatial parameter for 

rainfall estimation. These two parameters are considered since limitation in getting 

another atmospheric variable in the study area such as humidity. This study also 

focuses on the calibration of downscaling model based on these two parameters 

NDVI and DEM.  

NDVI is chosen as the parameters in downscaling technique based on the 

assumption that precipitation can be simulated by vegetation and topography 

proxies at various spatial scales. However, the non-stationarity of the relationship 

between precipitation and vegetation or topography has not been appropriately 

 

Figure 1.1 The study region and locations of gauge station 
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considered when low-resolution satellite precipitation datasets are downscaled 

using NDVI and DEM in previous studies. The NDVI data used in this study is 

derived from the atmospherically corrected reflectance in the red and near-infrared 

wavebands of the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensor aboard the Terra satellite. 

The DEM data used in this study was provided by the Shuttle Radar 

Topography Mission (SRTM) operated by the National Geospatial-Intelligence 

Agency (NGA) and the National Aeronautics and Space Administration (NASA). 

Considering the spatial scales of this study, we downloaded the DEM images with 

a spatial resolution of 90 m and then re-sampled them to 1 km by calculating the 

mean values of all pixels within each 1 km pixel. 

The second part deals with the comparison and the improvement of the 

GPM approach when compared with the TRMM estimation. Satellite-derived data 

from TRMM and GPM were both used, although at different spatial resolutions. 

NASA webpage, which describes the GPM as a better alternative to TRMM, forms 

the inspiration to use GPM IMERG data as a new product that began to be used in 

2016, dovetailing with the period of observation for this study which started in 

October 2016 during the wet monsoon season. TRMM data is being chosen based 

on the date and time of GPM data to meet the same temporal resolution to minimize 

the temporal variability of the satellite data itself.  

The study has focused on the Kelantan state where rain gauge stations are 

sparsely distributed. Since the northern part of Kelantan having less coverage of 

rain gauge, thus the interpolation method of gauge measurement is limited and does 

not cover the particular part. Since Kelantan is having a flash flood in 2004 due to 

non-stop light rainfall and heavy rainfall has hit the Kelantan area thus Kelantan is 

chosen as the main study area for this research study.  
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1.7 Thesis Organization 

To achieve the listed objectives of the study, Chapter 2 reviewed the 

literature that has a relationship with the niche of the study. It started with a brief 

description of rainfall and focusing on the rainfall as the type of precipitation. Then, 

this chapter also explained the existing methods that are used for estimating the 

amount of rainfall using satellite-data rainfall information. Further, this chapter 

introduces spatial downscaling procedures. Each of the objectives listed is 

addressed by adopting the research method has explained in Chapter 3. Chapter 4 

presents the results of the operation of the methodology and Chapter 5 discusses 

and conclude the thesis with the recommendation as well. 
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