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ABSTRACT 

The term water depth refers to the depth of the water body relative to the level 

of the water surface.  In the remote sensing approach, water depth is determined using 

indirect methods that retrieve the bottom level of the water body without physically 

touching it.  In the context of satellite imaging, water depths were mapped by using 

two radiative transfer models, namely Depth Invariance Index (DII) and Bottom 

Reflectance Index (BRI).  However, the estimation of water depth by using airborne 

and satellite-borne pose error of water column.  The water depth mapping by using 

UAV was recently conducted through the Structure from Motion (SFM). Therefore, 

this study presented the effects of water column correction on the multispectral 

Unmanned Aerial Vehicle (UAV) image to derive water depth.  The following 

objectives were realised, firstly to retrieve the water-leaving radiance from all target 

points of different depths; secondly to model the water depth by applying the radiative 

transfer model to water-leaving radiance and; thirdly to determine and assess the 

effects of the water column on depths derived from UAV image.  A total of six 

different sets of targets which consisted of forty four different depths had been 

deployed at Universiti Teknologi Malaysia’s swimming pool. DII and BRI radiative 

transfer models were used to minimise the column error on the imagery. The results 

showed that both radiative transfer models produced lower accuracy than direct 

modelling with water column correction. The best depth modelled was obtained by 

using log regression with band 1, which reported an accuracy of 0.042m, compared to 

the images corrected with BRI and DII with 0.162m and 0.128m, respectively. In 

conclusion, the outcomes of this study should serve as a basis for enhancing water 

column effect on depth estimation by using UAV multispectral image, hence, proof 

beneficial to assist the application of data in coastal monitoring. 
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ABSTRAK 

Istilah kedalaman air merujuk kepada kedalaman jasad air berbanding dengan 

aras permukaan air. Dalam pendekatan penderiaan jauh, kedalaman air ditentukan 

menggunakan kaedah tidak langsung yang mengambil semula aras bawah jasad air 

tanpa menyentuhnya secara fizikal. Dalam konteks pengimejan satelit, kedalaman air 

dipetakan dengan menggunakan dua model pemindahan sinaran, iaitu Indeks 

Kedalaman Ketidakboleh-ubahan (DII) dan Indeks Kepantulan Bawah (BRI). Walau 

bagaimanapun, anggaran kedalaman air yang menggunakan angkutan-udara dan 

angkutan-satelit memberi keralatan ruangan air. Pemetaan kedalaman air 

menggunakan Pesawat Udara Tanpa Pemandu (UAV) baru-baru ini dijalankan melalui 

Pengstrukturan Dari Pergerakan (SFM). Oleh itu, kajian ini membincangkan kesan 

pembetulan ruang air pada imej kepelbagaian spektrum UAV untuk memperoleh 

kedalaman air. Objektif berikut adalah diamati, pertama untuk memperoleh sinaran 

pelepasan air dari semua titik sasaran dengan kedalaman yang berbeza; kedua untuk 

memodelkan kedalaman air dengan mengaplikasi model pemindahan sinaran kepada 

sinaran pelepasan air; dan yang ketiga untuk menentukan dan menilai kesan ruang air 

terhadap kedalaman yang diperoleh daripada imej UAV. Sejumlah enam set sasaran 

yang berbeza yang terdiri daripada empat puluh empat kedalaman berbeza telah 

digunakan di kolam renang Universiti Teknologi Malaysia. DII dan BRI digunakan 

untuk meminimurnkan ralat ruang pengimejan. Keputusan kajian 1m menunjukkan 

bahawa kedua-dua model pemindahan sinaran menghasilkan ketepatan yang lebih 

rendah daripada permodelan kedalaman terus tanpa koreksi kolum air. Model 

kedalaman terbaik diperoleh dengan menggunakan regresi log untuk jalur 1, dengan 

ketepatan 0.042m, berbanding imej yang dibetulkan dengan BRI dan DII dengan 

ketepatan masing-masing 0.162m dan 0.128m. Kesimpulannya, hasil kajian ini akan 

dijadikan sebagai asas untuk meningkatkan kesan ruang air pada anggaran kedalaman 

dengan menggunakan imej kepelbagaian spektrum UAV, oleh itu, bermanfaat untuk 

membantu aplikasi data dalam pengawasan perairan pantai.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

Water depth provides many useful information in order to do monitoring, 

planning and conservation of the coastal. It can also be derived by using remote sensing 

method.  Jagalingam et al., (2015) map water depth using Landsat 8 satellite imagery 

by applying ratio transform algorithm which shows good correlation between 

hydrographic chart sound value and algorithm derived. Shah et al., (2020) mention 

that there are three methods in optical remote sensing that can be used to estimate the 

water depth. Emprical bathymetry methods, band ratio bathymetry method and lastly 

inversion bathymetry models. Those three methods have their own strength and 

weakness. Empirical bathymetry usually measure relations between water depth and 

pixel intensity. The presumption behind these band ratio bathymetric methods is that 

the proportion of a substrate reflectance for a couple of wavelengths is equivalent for 

each different substrate type within a scene. 

The specific challenges associated with remote sensing of submerged 

ecosystem is that the water column overlaying the substrate affects the remotely sensed 

signal substantially because of optical attenuation of light in water (Vahtmäe, et al., 

2020). Water depth, tidal variability, water quality, surface roughness of numerous 

substrata, as well as slope and aspect variation of benthic topography (cause diffuse 

reflectance effects and shading), combine to limit the accuracy with remote sensing 

can be applied to find substrate type. Also, application of remote sensing to monitor 

an aquatic ecosystem is problematic by understanding that 90% of the contribution to 

the signal at the top of the atmosphere in the visible depends on atmospheric and water 

surface characteristics (Kuhn et al., 2019). 
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There are many researchers who had tried to correct the water column error. 

Budhiman et al., (2012) correct the water column error by using Lyzenga, (1981) 

algorithm, Depth Invariance Index (DII) on Landsat ETM+ to classify the benthic 

habitat. Misbari and Hashim, (2016) applied the water column correction on the multi-

temporal satellite imaging uses advanced sensors to monitor seagrass biomass and 

clarify waters that are clear to turbid. Seagrass data was culled from several seasonal 

multi-temporal satellite datasets. In order to map substrate cover type, Pahlevan et al., 

(2006) also utilize DII to correct the water column error. In addition, wide application 

of water column correction does not end only in benthic habitat mapping, it was also 

used on bathymetry application. Manessa et al., (2017) utilized the lyzenga’s algorithm 

to reduce the effect of water column in deriving water depth information. 

However, there are still lacks in the application of water column correction of 

multispectral UAV to map water depth. Rossi et al., (2020) did comparison of water 

depth retrieval by using three methods, Satellite derived bathymetry, UAV Derived 

bathymetry and field data collection of echo sounder. The finding from Rossi et al., 

(2020) state that the accuracy of the water depth estimation was having accuracy of 20 

cm for depth of 5meters and deeper. 

1.2 Problem Statement 

Water column pose errors in deriving water depth information. The errors are 

crucially needed to be corrected in order to have good results in coastal applications 

such as water depth mapping. This is because the water bodies’ bottom depths are 

heavily affected by the refraction of the optical rays. Refraction acts on these remotely 

sensed images similar to the radial distortion, differing practically at each pixel of 

every image, leading to unstable solutions and erroneous depths. Water depth 

information is helpful for many applications, including navigations, mapping and also 

coastal management. With the recent advancement of UAV technology, higher 

temporal and spatial resolution of data leads to better coastal area management.  
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The understanding on how water column errors affect the water depth 

estimation is very crucial. Previous researches had developed water column correction 

model such as Depth Invariance Index (DII) and Bottom Reflectance Index (BRI) 

especially for satellite data to tackle the issues. The model were applied in various 

water types across coastal and lake. The researchers showed improvement in the 

accuracy of water depth estimation by applying the water column correction to the 

satellite image. Due to high altitude of satellite data, the interference of atmospheric 

reduces the capabilities of the model to eliminate the water column errors. However, 

the application in UAV reduced the effect of the atmospheric errors and left yet the 

water column error.  

The application of UAV for water depth retrieval by using multispectral 

affected by the water column error must be corrected for different water depth and 

types.Water type refers to category of seawater clarity, namely water type IA, II, and 

III for clear open ocean waters, mild turbid seawater, and turbid coastal waters, 

respectively. This water types is also known as Jerlov water types. Therefore, this 

research used the capability of Unmanned Aerial Vehicle (UAV) and multispectral 

image to quantify the water depth and the application of water column correction for 

shallow water area. 

1.3 Research Questions 

a) How can the water-leaving radiance be obtained by using UAV for different 

water depth? 

b) To what extent can the radioactive transfer model using BRI and DII be 

minimized 

c) What is the effect of water column towards depth? 
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1.4 Research Aim and Objectives 

The main focus of this thesis is to determine the water depth from UAV image 

and to investigate the effect of water column to the determined depths The objectives 

of the research are: 

a) To retrieve the water leaving radiance from all target points of different depths; 

b) To model the water depth by applying the radiative transfer model to water 

leaving radiance; and 

c) To determine and assess the effects of water column on depths derived from 

UAV image. 

 

1.5 Scope of the Study 

 

Water-leaving radiance referred to the radiance that transmitted out from the 

water. Water leaving radiance carries information on the water column and bottom 

reflectance. The area of study will only be 1m depth of swimming pool UTM. The 

water leaving radiance was obtained by using UAV for this study. This research uses 

five different types of models to calculate the water depth. The first model calculates 

the water depth without considering the water column. Since there is an impact of the 

water column in the orthophoto, this model was supposed to have low Z prediction 

accuracy. The depth is calculated using the relationship between spectroradiometer 

readings and depth in the following model. Furthermore, the depth was calculated 

using a Digital Elevation Model (DEM) created with Agisoft Metshape software.  

In addition, empirical models were used in order to determine the relationship 

of each models and used for modelling purpose. To asses the accuracy of the model, 

Root Mean Square Error (RMSE) was conducted along with bias analysis. 
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Finally, the water depths were calculated using two water column correction 

models that included: DII and BRI. The DII water column correction was chosen in 

this study because it is frequently used by researchers and is well-known for its ability 

to correct water column errors, particularly in shallow and clear water. Whereas the 

BRI was adopted as it is the latest and famous especially in mapping water depths and 

is better suited for use in Jerlov’s water type II or less cleared the water. Both models 

were used for the purpose of comparison 

1.6 Significance of Research 

Once the knowledge on this model reacts to water column errors can be 

understand, lower cost of water depth derived can be map in shallow area which can 

reduce the cost compared to the conventional bathymetry mapping with medium 

accuracy. Therefore, the information derived can be employed in reporting water 

column correction techniques and can be applied in a larger coastal environment. By 

understanding the effect of the water column on water depth derived from unmanned 

aerial vehicle, researchers and local municipality who are involve in coral and seagrass 

study can obtain sufficient accuracy water depth information which is crucial in 

mapping those features. 

1.7 Study Area 

The study was conducted at Universiti Teknologi Malaysia’s swimming pool 

in Johor. Since this study would like to study on water depths, controlled environment 

was set up in the pool. The pool selected in this study was 1 meter depth of pool with 

the area of 1140 m2. From this 1 meter pool, various depths had been introduced by 

using different height of target then submerged them into the pool to provide different 

water depth reading from the UAV. 
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Figure 1.1 The location of Controlled Experiment 

 

 

 

1.8 Thesis Outline 

This thesis is divided into five chapters. This part discussed the summary of 

each chapter; Chapter One (Introduction), Chapter Two (literature Review), Chapter 

Three (Research Methodology), Chapter Four (Result and Analysis) and Chapter Five 

(Conclusion and Recommendations). 

i. Chapter 1 (Introduction) 

This chapter focuses on the background study, aim and objectives of this 

research. Besides that, this chapter also elaborated on the scope of the study in terms 

of study area, data that had been utilized and also the significance of the study. 
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ii. Chapter 2 (Literature Review) 

This chapter was arranged so that it will answer each of the objectives set in 

chapter 1 to achieve the aim of the study. Firstly, it starts with fundamental of light 

and signal interacts with marines. In addition, the literature regarding method to 

acquire water-leaving radiance for different platforms. The chapter continues with the 

remote sensing model to retrieve water depth. Lastly, the techniques available in 

reducing water column error. 

iii. Chapter 3 (Research Methodology) 

This chapter describes the overall process adopted in this study to achieve 

objectives established. This chapter was also arranged to answer each of the objectives 

from first objective to third objective respectively. The explanation of the data sources 

and material which includes platform utilized to acquire the data, the sensor used 

during the data collection. Besides that, technique used on flying the drone and also 

the methods involve in producing the orthophoto. Moreover, the modeling technique 

and also the water column correction applied in this research. Lastly, the technique 

adopted during the assessment of the water column effect on UAV image with respect 

to depth. 

iv. Chapter 4 (Result and Analysis) 

This chapter mainly discussed on the result obtained and the analysis of the 

results. First section of the results shows the water leaving radiance obtained which is 

the orthophoto image produced itself. Next, the retrieval of water depth through five 

different methods namely, image without water column correction, image with DII 

water column correction, image with BRI water column correction, Digital Elevation 

Model depth’s and lastly depth by the spectroradiometer readings. The assessment and 

discussion of the models also had been done in this chapter. 
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v. Chapter 5 (Conclusion and Recommendation) 

This chapter comprise the conclusion and future recommendation works of the 

study. 
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