EFFECT OF WATER COLUMN ON WATER DEPTH DERIVED FROM UNMANNED AERIAL VEHICLE MULTISPECTRAL IMAGE

MUHAMMAD HAFIZ BIN AB SAMAN

UNIVERSITI TEKNOLOGI MALAYSIA

EFFECT OF WATER COLUMN ON WATER DEPTH DERIVED FROM UNMANNED AERIAL VEHICLE MULTISPECTRAL IMAGE

MUHAMMAD HAFIZ BIN AB SAMAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

Faculty of Built Environment and Surveying Universiti Teknologi Malaysia

NOVEMBER 2021

DEDICATION

I dedicate my dissertation work to my family and my wife. A special feeling of gratitude to my loving parents, Ab Saman bin Abd Kader and my mother Wan Nurulhuda binti Wan Shamsuri whose words of encouragement and push for tenacity ring in my ears. My wife Ain Nur Nasuha binti Azhar and my other family members have never left my side and are very special. I also dedicate this dissertation to all my friends including my Nigerian friends Dalhatu Aliyu Sani, Babangida baiya and Danboyi Amusuk who have supported me throughout the process. I will always appreciate all they have done, especially Tam Tze Huey, Nooremi Fadzilah, Jacquoelyne Paska, Linda Roziani, Maslina Mohd Natar, Nurul amalin for helping me develop my processing skills, for the many hours of assistance for data collection, and Nurul Nadiah Yahya for assisting me and also I Net Spatial Sdn Bhd my employer. Last but not least Mr. Farid Fauzi, Mr Taufik Rosli and Mr Taufiq Razali who assited me in data collection all my Insteg's fellow.

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Professor Sr. Dr. Mazlan bin Hashim, for encouragement, guidance, critics and friendship. I am also indebted to Universiti Teknologi Malaysia (UTM) staffs and friend who assisted me in many ways.

My fellow postgraduate student should also be recognised for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to my entire family member.

ABSTRACT

The term water depth refers to the depth of the water body relative to the level of the water surface. In the remote sensing approach, water depth is determined using indirect methods that retrieve the bottom level of the water body without physically touching it. In the context of satellite imaging, water depths were mapped by using two radiative transfer models, namely Depth Invariance Index (DII) and Bottom Reflectance Index (BRI). However, the estimation of water depth by using airborne and satellite-borne pose error of water column. The water depth mapping by using UAV was recently conducted through the Structure from Motion (SFM). Therefore, this study presented the effects of water column correction on the multispectral Unmanned Aerial Vehicle (UAV) image to derive water depth. The following objectives were realised, firstly to retrieve the water-leaving radiance from all target points of different depths; secondly to model the water depth by applying the radiative transfer model to water-leaving radiance and; thirdly to determine and assess the effects of the water column on depths derived from UAV image. A total of six different sets of targets which consisted of forty four different depths had been deployed at Universiti Teknologi Malaysia's swimming pool. DII and BRI radiative transfer models were used to minimise the column error on the imagery. The results showed that both radiative transfer models produced lower accuracy than direct modelling with water column correction. The best depth modelled was obtained by using log regression with band 1, which reported an accuracy of 0.042m, compared to the images corrected with BRI and DII with 0.162m and 0.128m, respectively. In conclusion, the outcomes of this study should serve as a basis for enhancing water column effect on depth estimation by using UAV multispectral image, hence, proof beneficial to assist the application of data in coastal monitoring.

ABSTRAK

Istilah kedalaman air merujuk kepada kedalaman jasad air berbanding dengan aras permukaan air. Dalam pendekatan penderiaan jauh, kedalaman air ditentukan menggunakan kaedah tidak langsung yang mengambil semula aras bawah jasad air tanpa menyentuhnya secara fizikal. Dalam konteks pengimejan satelit, kedalaman air dipetakan dengan menggunakan dua model pemindahan sinaran, iaitu Indeks Kedalaman Ketidakboleh-ubahan (DII) dan Indeks Kepantulan Bawah (BRI). Walau bagaimanapun, anggaran kedalaman air yang menggunakan angkutan-udara dan angkutan-satelit memberi keralatan ruangan air. Pemetaan kedalaman air menggunakan Pesawat Udara Tanpa Pemandu (UAV) baru-baru ini dijalankan melalui Pengstrukturan Dari Pergerakan (SFM). Oleh itu, kajian ini membincangkan kesan pembetulan ruang air pada imej kepelbagaian spektrum UAV untuk memperoleh kedalaman air. Objektif berikut adalah diamati, pertama untuk memperoleh sinaran pelepasan air dari semua titik sasaran dengan kedalaman yang berbeza; kedua untuk memodelkan kedalaman air dengan mengaplikasi model pemindahan sinaran kepada sinaran pelepasan air; dan yang ketiga untuk menentukan dan menilai kesan ruang air terhadap kedalaman yang diperoleh daripada imej UAV. Sejumlah enam set sasaran yang berbeza yang terdiri daripada empat puluh empat kedalaman berbeza telah digunakan di kolam renang Universiti Teknologi Malaysia. DII dan BRI digunakan untuk meminimurnkan ralat ruang pengimejan. Keputusan kajian 1m menunjukkan bahawa kedua-dua model pemindahan sinaran menghasilkan ketepatan yang lebih rendah daripada permodelan kedalaman terus tanpa koreksi kolum air. Model kedalaman terbaik diperoleh dengan menggunakan regresi log untuk jalur 1, dengan ketepatan 0.042m, berbanding imej yang dibetulkan dengan BRI dan DII dengan ketepatan masing-masing 0.162m dan 0.128m. Kesimpulannya, hasil kajian ini akan dijadikan sebagai asas untuk meningkatkan kesan ruang air pada anggaran kedalaman dengan menggunakan imej kepelbagaian spektrum UAV, oleh itu, bermanfaat untuk membantu aplikasi data dalam pengawasan perairan pantai.

TABLE OF CONTENTS

TITLE

D	ECLARATION	iii
D	iv	
A	CKNOWLEDGEMENT	v
Al	BSTRACT	vi
Al	BSTRAK	vii
TA	ABLE OF CONTENTS	viii
LI	IST OF TABLES	xi
LI	IST OF FIGURES	xiii
LI	IST OF ABBREVIATIONS	xvii
LI	IST OF SYMBOLS	xviii
LI	IST OF APPENDICES	xix
CHAPTER 1	INTRODUCTION	1
1.1	Background Study	1
1.2	2 Problem Statement	2
1.3	3 Research Questions	3
1.4	4 Research Aim and Objectives	4
1.5	5 Scope of the Study	4
1.0	5 Significance of Research	5
1.7	7 Study Area	5
1.8	8 Thesis Outline	6
CHAPTER 2	LITERATURE REVIEW	9

2.1	Introduction	9
2.2	Interaction of light with coastal water	9
2.3	Water leaving radiance retrieval	11
	2.3.1 UAV studies in water leaving radiance retrieval	

15

2.4	Remote Sensing Methods for Retrieving Water Depth				
2.5	Techniques available in reducing water column error				
2.6	Chapter Summary				
CHAPTER 3	RESE	CARCH M	IETHODOLOGY	31	
3.1	Introd	uction		31	
3.2	Data S	Sources an	d Material	31	
	3.2.1	Multispe	ctral Image	32	
	3.2.2	In situ da	nta	33	
	3.2.3	Global P	ositioning System (GPS) Survey	34	
	3.2.4	Spectrora	adiometer	35	
3.3	Softwa	are for Da	ta Processing	36	
3.4	Metho	odology		37	
	3.4.1	Retrieval	of the water-leaving radiance	39	
		3.4.1.1	Ground control points (GCP)	39	
		3.4.1.2	Depth data measurement	42	
		3.4.1.3	Radiance observations of the target	45	
		3.4.1.4	Deployment of UAV	46	
	3.4.2	Retrieval	l of water depth	60	
		3.4.2.1	Bottom Reflectance Index	61	
		3.4.2.2	Depth Invariance Index	64	
		3.4.2.3	Empirical model for no water column correction	66	
		3.4.2.4	Modeling of spectroradiometer radiance	67	
		3.4.2.5	Modelling height from DEM	67	
	3.4.3	Assessm image wi	ent of the water column effect on UAV ith respect to depth.	68	
3.5	Chapt	er Summa	ry	68	
CHAPTER 4	RESU	ULTS, AN	ALYSIS AND DISCUSSION	69	
4.1	Introd	uction		69	
4.2	Water leaving radiance from UAV image			69	
			ix		

4.3	4.3 Modelling of all data		70
	4.3.1	Analysis of direct modeling multispectral image	70
	4.3.2	Analysis of water depth mapping by applying depth invariant index water column correction before water depth prediction	80
	4.3.3	Analysis of water depth mapping by applying bottom reflectance index water column correction before water depth prediction	93
	4.3.4	Analysis of depth estimation from Digital Elevation Model	103
	4.3.5	Analysis of spectroradiometer depth estimation	105
4.4	Asses	sment of the water column effect	107
	4.4.1	Overall RMSE of the predicted model	107
	4.4.2	To assess water column effect towards depth estimation	110
	4.4.3	The highest accuracy for each of the model with in-situ data	114
4.5	Discu	ssion	119
4.6	Summ	nary	122
CHAPTER 5 CO		CLUSION AND RECOMMENDATIONS	123
5.1	Concl	usion	123
5.2	Recor	nmendation	124
REFERENCES			126
LIST OF PUBL	ICATIO	DNS	141

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Various methods on retrieving water leaving radiance	14
Table 2.2	UAV application that has been used in coastal area	18
Table 2.3	Water depth Mapping by various derived remote sensing application	24
Table 2.4	The water column correction applied in wide application	29
Table 3.1	Characteristics of UAV DJI Phantom 4 used in this study	32
Table 3.2	Specifications of Micasense RedEdge-M mounted on the UAV	33
Table 3.3	Specification of Topcon GR5 and RTK used in this study	35
Table 3.4	Specification of RS-3500 Spectroradiometer	36
Table 3.5	The water depth observe for Set A, B and C	44
Table 3.6	The water depth observed for target D, E and F	44
Table 3.7	The reflectance panel's value provided by Micasense sensor.	49
Table 3.8	Some of the parameters that were used in camera calibration	53
Table 3.9	The allignment parameters	55
Table 3.10	Shows the GCP and validation point to calculate the RMSE of orthophoto	59
Table 4.1	The R^2 of each of the regression model for each band	76
Table 4.2	Root Mean Square (Meter) and Bias for Band 1, 2 and 3 in depth prediction	79
Table 4.3	Values of deep-water radiance	81
Table 4.4	Shows the ratio of attenuation	85
Table 4.5	RMSE (Meter) of depth prediction by using DII water column correction as base	91
Table 4.6	Bias of the depth estimation by using DII water column correction as base	93

Table 4.7	Sun and UAV elevation angle for duing the data collection	94
Table 4.8	Shows the sun and UAV zenith angle below water	94
Table 4.9	Shows attenuation coefficient exhibits for each of band 1, band 2 and band 3	96
Table 4.10	RMSE (Meter) of depth prediction for band 1, band 2 and band 3	102
Table 4.11	RMSE (Meter) and bias of Set A, Set B, Set C, Set D, Set E and Set F	104
Table 4.12	RMSE (Meter) of spectroradiometer depth estimation	106
Table 4.13	RMSE (Meter) from all predicted model	107

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE		
Figure 1.1	The location of Controlled Experiment	6		
Figure 2.1	Retrieval of Water Depth Information from Remote Sensing Data Including UAV			
Figure 3.1	(a) The DJI Phantom 4 UAV set with micasense sensor; (b) Micasense multispectral camera attached to the UAV			
Figure 3.2	(a) The target during construction (b) illustation on the target before constructing the target			
Figure 3.3	The spectroradiometer used in this study	36		
Figure 3.4	Overall Flow Chart of the Study	38		
Figure 3.5	The water leaving radiance	39		
Figure 3.6	Process of rapid static GPS data observations	40		
Figure 3.7	(a) The placement of one of the markers inside the water (b) GPS data collection that had been used by using RTK inside the water	41		
Figure 3.8	The GPS data corrected to 3 stations JHJY, SPRG and KUKP			
Figure 3.9	The target that had been submerge into the water	43		
Figure 3.10	The arrangement and sequence of each of the target's point	43		
Figure 3.11	The process acquiring spectroradiometer's reading	46		
Figure 3.12	Illustration of the process acquiring UAV data	47		
Figure 3.13	The planned flight path of the flight during the data collection	48		
Figure 3.14	The real flight path and camera overlaps in the area	49		
Figure 3.15	Reflection calibration panel	50		
Figure 3.16	Flowchart of Processing UAV data	51		
Figure 3.17	Camera calibration before producing orthomosaic photo	52		
Figure 3.18	The radiometric calibration of the images	54		

Figure 3.19	Two ends product from processing the images using phtogrammetry software (a) DEM (b) multispectral orthophoto	56		
Figure 3.20	Shows orthophoto for three different bands; (a) Blue band (b) Green band (c) Red band			
Figure 3.21	The GCP and validation point of multispectral orthophoto	58		
Figure 3.22	Workflow for multispectral orhophoto	60		
Figure 3.23	Measuring Sun angle by using shadow and trigonometry	62		
Figure 3.24	Exponential relationship between radiance and water depth	64		
Figure 4.1	Model from linear relationship between Water depth and Band 1	71		
Figure 4.2	Model from exponential relationship between Water depth and Band 1	72		
Figure 4.3	Model from log relationship between Water depth and Band 1	72		
Figure 4.4	Model from linear relationship between Water depth and Band 2	73		
Figure 4.5	Model from Exponential relationship between Water depth and Band 2	73		
Figure 4.6	Model from log relationship between Water depth and Band 2	74		
Figure 4.7	Model from linear relationship between Water depth and Band 3	74		
Figure 4.8	Model from exponential relationship between Water depth and Band 3	75		
Figure 4.9	Model from log relationship between Water depth and Band 3	75		
Figure 4.10	Band 1 Linear	77		
Figure 4.11	Band 1 exponential	77		
Figure 4.12	Band 1 logarithmic	77		
Figure 4.13	Band 2 Linear	77		
Figure 4.14	Band 2 Exponential	78		
Figure 4.15	Band 2 Log	78		

Band 3 Linear	78
Band 3 Exponential	78
Band 3 Log	79
RMSE (meter) of Depth prediction of each band by linear, exponential and log regression model	80
Scatter plot of Sample of band 1 and band 2	83
Scatter plot of Sample of band 1 and band 3	83
Scatterplot of sample of band 2 and band 3	84
DII band 1 and 2	86
DII band 1 and 3	86
DII band 2 and 3	86
Water depth image prediction using DII band 12 by Linear regression	87
Water depth image prediction using DII band 12 by Exponential regression	88
Water depth image prediction using DII band 13 by Linear regression	88
Water depth image prediction using DII band 13 by exponential regression	89
Water depth image prediction using DII band 13 by log regression	89
Water depth image prediction using DII band 23 by linear regression	90
Water depth image prediction using DII band 23 by exponential regression	90
Water depth image prediction using DII band 23 by log regression	91
RMSE (Meter) of depth estimation by using DII12, DII13 &DII23 for linear, exponential and log regression analysis	92
Relationship between radiance of band 1 and depth	95
Relationship between radiance of band 2 and depth	96
Relationship between radiance of band 1 and depth	96
BRI band 1	98
	 Band 3 Linear Band 3 Exponential Band 3 Log RMSE (meter) of Depth prediction of each band by linear, exponential and log regression model Scatter plot of Sample of band 1 and band 2 Scatter plot of Sample of band 1 and band 3 Scatter plot of Sample of band 2 and band 3 Scatterplot of sample of band 2 and band 3 DII band 1 and 2 DII band 1 and 3 DII band 2 and 3 Water depth image prediction using DII band 12 by Linear regression Water depth image prediction using DII band 13 by Linear regression Water depth image prediction using DII band 13 by Linear regression Water depth image prediction using DII band 13 by Linear regression Water depth image prediction using DII band 13 by Linear regression Water depth image prediction using DII band 13 by Linear regression Water depth image prediction using DII band 13 by Linear regression Water depth image prediction using DII band 13 by log regression Water depth image prediction using DII band 23 by linear regression Water depth image prediction using DII band 23 by log regression Water depth image prediction using DII band 23 by log methal regression Water depth image prediction using DII band 23 by log regression Water depth image prediction using DII band 23 by log methal regression Water depth image prediction using DII band 23 by log regression Water depth image prediction using DII band 23 by log methal regression Water depth image prediction using DII band 23 by log regression RMSE (Meter) of depth estimation by using DII12, DII13 & DII23 for linear, exponential and log regression analysis Relationship between radiance of band 1 and depth Relationship between radiance of band 1 and depth BRI band 1

Figure 4.39	BRI band 2	98
Figure 4.40	BRI band 3	99
Figure 4.41	Water Depth Dervied Map from BRI band 1	101
Figure 4.42	Water Depth Dervied Map from BRI band 2	101
Figure 4.43	Water Depth Derived Map from BRI band 3	102
Figure 4.44	RMSE (meter) and bias for depth estimation by using BRI band 1, band 2 and band 3	103
Figure 4.45	The result of Digital Elevation Model for each of the set for the target	104
Figure 4.46	RMSE (Meter) of height from DEM	105
Figure 4.47	Exponential relation of depth with band 1	106
Figure 4.48	Graph for RMSE (Meter) by using all predictions	109
Figure 4.49	Bathymetry of the validation sets (cm)	110
Figure 4.50	The differences of predicted depth for non-water column corrected image to Band 1	111
Figure 4.51	The differences of predicted depth for non-water column corrected image	112
Figure 4.52	The differences of predicted depth for non-water column corrected image	113
Figure 4.53	Δ Depth prediction with in situ data for DII ₁₂	114
Figure 4.54	Δ Depth prediction with in situ data for BRI	115
Figure 4.55	Δ Depth prediction with in situ data for DEM	116
Figure 4.56	Δ Depth prediction with in situ data for spectroradiometer	117
Figure 4.57	Δ Depth prediction with in situ data for band 1 log	118
Figure 4.58	Map of Band 1 modelled by log empiral model predicted the best water depth.	119
Figure 4.59	The RMSE (centimeter) of DII application in this study, (Rossi <i>et al.</i> , 2020) and (Zinke and Flener, 2012)	121

LIST OF ABBREVIATIONS

ANN	-	Artificial Neural Network
BRI	-	Bottom Reflectance Index
DEM	-	Digital Elevation Model
DII	-	Depth Invariant Index
FRM	-	Fiduciary Reference Measurements
GCP	-	Ground Control Points
GPS	-	Global Positioning System
GWR	-	Geographically weighted Regression
IHO	-	International Hydrographic Organization
JHJY	-	Johor Jaya
KUKP	-	Kukup
MLR	-	Multiple Linear Regression
OBIA	-	Object Based Image Analysis
OBRA	-	Optimal Band Ratio Analysis
PCA	-	Principal Component Analysis
RMSE	-	Root Mean Square Error
RS	-	Remote Sensing
RTK	-	Real Time Kinematic
SDG	-	Sustainable Development Goal
SFM	-	Structure From Motion
SPRG	-	Artificial Neural Network
UAV	-	Unmanned Aerial Vehicle
UDB	-	UAV- Derived Bathymetry
UTM	-	Universiti Teknologi Malaysia

LIST OF SYMBOLS

Δ	-	Delta
K	-	Radial Distortion
C _x	-	Principal point x
Cy	-	Principal point y
Val	-	Validation point
Ø's	-	Sun Zenith angle
Ø's	-	UAV Zenith angle
g	-	Geometric Factor
K _i	-	Attenuation Coefficient

LIST OF APPENDICES

APPENDIX	TITLE		PAGE
Appendix A	In-situ data measurement		1323
Appendix B	GPS Planning	data	139
Appendix C	Data Collection Photos		140

CHAPTER 1

INTRODUCTION

1.1 Background Study

Water depth provides many useful information in order to do monitoring, planning and conservation of the coastal. It can also be derived by using remote sensing method. Jagalingam *et al.*, (2015) map water depth using Landsat 8 satellite imagery by applying ratio transform algorithm which shows good correlation between hydrographic chart sound value and algorithm derived. Shah *et al.*, (2020) mention that there are three methods in optical remote sensing that can be used to estimate the water depth. Emprical bathymetry methods, band ratio bathymetry method and lastly inversion bathymetry models. Those three methods have their own strength and weakness. Empirical bathymetry usually measure relations between water depth and pixel intensity. The presumption behind these band ratio bathymetric methods is that the proportion of a substrate reflectance for a couple of wavelengths is equivalent for each different substrate type within a scene.

The specific challenges associated with remote sensing of submerged ecosystem is that the water column overlaying the substrate affects the remotely sensed signal substantially because of optical attenuation of light in water (Vahtmäe, et al., 2020). Water depth, tidal variability, water quality, surface roughness of numerous substrata, as well as slope and aspect variation of benthic topography (cause diffuse reflectance effects and shading), combine to limit the accuracy with remote sensing can be applied to find substrate type. Also, application of remote sensing to monitor an aquatic ecosystem is problematic by understanding that 90% of the contribution to the signal at the top of the atmosphere in the visible depends on atmospheric and water surface characteristics (Kuhn *et al.*, 2019).

There are many researchers who had tried to correct the water column error. Budhiman *et al.*, (2012) correct the water column error by using Lyzenga, (1981) algorithm, Depth Invariance Index (DII) on Landsat ETM+ to classify the benthic habitat. Misbari and Hashim, (2016) applied the water column correction on the multitemporal satellite imaging uses advanced sensors to monitor seagrass biomass and clarify waters that are clear to turbid. Seagrass data was culled from several seasonal multi-temporal satellite datasets. In order to map substrate cover type, Pahlevan *et al.*, (2006) also utilize DII to correct the water column error. In addition, wide application of water column correction does not end only in benthic habitat mapping, it was also used on bathymetry application. Manessa *et al.*, (2017) utilized the lyzenga's algorithm to reduce the effect of water column in deriving water depth information.

However, there are still lacks in the application of water column correction of multispectral UAV to map water depth. Rossi *et al.*, (2020) did comparison of water depth retrieval by using three methods, Satellite derived bathymetry, UAV Derived bathymetry and field data collection of echo sounder. The finding from Rossi *et al.*, (2020) state that the accuracy of the water depth estimation was having accuracy of 20 cm for depth of 5meters and deeper.

1.2 Problem Statement

Water column pose errors in deriving water depth information. The errors are crucially needed to be corrected in order to have good results in coastal applications such as water depth mapping. This is because the water bodies' bottom depths are heavily affected by the refraction of the optical rays. Refraction acts on these remotely sensed images similar to the radial distortion, differing practically at each pixel of every image, leading to unstable solutions and erroneous depths. Water depth information is helpful for many applications, including navigations, mapping and also coastal management. With the recent advancement of UAV technology, higher temporal and spatial resolution of data leads to better coastal area management. The understanding on how water column errors affect the water depth estimation is very crucial. Previous researches had developed water column correction model such as Depth Invariance Index (DII) and Bottom Reflectance Index (BRI) especially for satellite data to tackle the issues. The model were applied in various water types across coastal and lake. The researchers showed improvement in the accuracy of water depth estimation by applying the water column correction to the satellite image. Due to high altitude of satellite data, the interference of atmospheric reduces the capabilities of the model to eliminate the water column errors. However, the application in UAV reduced the effect of the atmospheric errors and left yet the water column error.

The application of UAV for water depth retrieval by using multispectral affected by the water column error must be corrected for different water depth and types.Water type refers to category of seawater clarity, namely water type IA, II, and III for clear open ocean waters, mild turbid seawater, and turbid coastal waters, respectively. This water types is also known as Jerlov water types. Therefore, this research used the capability of Unmanned Aerial Vehicle (UAV) and multispectral image to quantify the water depth and the application of water column correction for shallow water area.

1.3 Research Questions

- a) How can the water-leaving radiance be obtained by using UAV for different water depth?
- b) To what extent can the radioactive transfer model using BRI and DII be minimized
- c) What is the effect of water column towards depth?

1.4 Research Aim and Objectives

The main focus of this thesis is to determine the water depth from UAV image and to investigate the effect of water column to the determined depths The objectives of the research are:

- a) To retrieve the water leaving radiance from all target points of different depths;
- b) To model the water depth by applying the radiative transfer model to water leaving radiance; and
- c) To determine and assess the effects of water column on depths derived from UAV image.

1.5 Scope of the Study

Water-leaving radiance referred to the radiance that transmitted out from the water. Water leaving radiance carries information on the water column and bottom reflectance. The area of study will only be 1m depth of swimming pool UTM. The water leaving radiance was obtained by using UAV for this study. This research uses five different types of models to calculate the water depth. The first model calculates the water depth without considering the water column. Since there is an impact of the water column in the orthophoto, this model was supposed to have low Z prediction accuracy. The depth is calculated using the relationship between spectroradiometer readings and depth in the following model. Furthermore, the depth was calculated using a Digital Elevation Model (DEM) created with Agisoft Metshape software.

In addition, empirical models were used in order to determine the relationship of each models and used for modelling purpose. To asses the accuracy of the model, Root Mean Square Error (RMSE) was conducted along with bias analysis. Finally, the water depths were calculated using two water column correction models that included: DII and BRI. The DII water column correction was chosen in this study because it is frequently used by researchers and is well-known for its ability to correct water column errors, particularly in shallow and clear water. Whereas the BRI was adopted as it is the latest and famous especially in mapping water depths and is better suited for use in Jerlov's water type II or less cleared the water. Both models were used for the purpose of comparison

1.6 Significance of Research

Once the knowledge on this model reacts to water column errors can be understand, lower cost of water depth derived can be map in shallow area which can reduce the cost compared to the conventional bathymetry mapping with medium accuracy. Therefore, the information derived can be employed in reporting water column correction techniques and can be applied in a larger coastal environment. By understanding the effect of the water column on water depth derived from unmanned aerial vehicle, researchers and local municipality who are involve in coral and seagrass study can obtain sufficient accuracy water depth information which is crucial in mapping those features.

1.7 Study Area

The study was conducted at Universiti Teknologi Malaysia's swimming pool in Johor. Since this study would like to study on water depths, controlled environment was set up in the pool. The pool selected in this study was 1 meter depth of pool with the area of 1140 m². From this 1 meter pool, various depths had been introduced by using different height of target then submerged them into the pool to provide different water depth reading from the UAV.

Figure 1.1 The location of Controlled Experiment

1.8 Thesis Outline

This thesis is divided into five chapters. This part discussed the summary of each chapter; Chapter One (Introduction), Chapter Two (literature Review), Chapter Three (Research Methodology), Chapter Four (Result and Analysis) and Chapter Five (Conclusion and Recommendations).

i. Chapter 1 (Introduction)

This chapter focuses on the background study, aim and objectives of this research. Besides that, this chapter also elaborated on the scope of the study in terms of study area, data that had been utilized and also the significance of the study.

ii. Chapter 2 (Literature Review)

This chapter was arranged so that it will answer each of the objectives set in chapter 1 to achieve the aim of the study. Firstly, it starts with fundamental of light and signal interacts with marines. In addition, the literature regarding method to acquire water-leaving radiance for different platforms. The chapter continues with the remote sensing model to retrieve water depth. Lastly, the techniques available in reducing water column error.

iii. Chapter 3 (Research Methodology)

This chapter describes the overall process adopted in this study to achieve objectives established. This chapter was also arranged to answer each of the objectives from first objective to third objective respectively. The explanation of the data sources and material which includes platform utilized to acquire the data, the sensor used during the data collection. Besides that, technique used on flying the drone and also the methods involve in producing the orthophoto. Moreover, the modeling technique and also the water column correction applied in this research. Lastly, the technique adopted during the assessment of the water column effect on UAV image with respect to depth.

iv. Chapter 4 (Result and Analysis)

This chapter mainly discussed on the result obtained and the analysis of the results. First section of the results shows the water leaving radiance obtained which is the orthophoto image produced itself. Next, the retrieval of water depth through five different methods namely, image without water column correction, image with DII water column correction, image with BRI water column correction, Digital Elevation Model depth's and lastly depth by the spectroradiometer readings. The assessment and discussion of the models also had been done in this chapter.

v. Chapter 5 (Conclusion and Recommendation)

This chapter comprise the conclusion and future recommendation works of the study.

REFERENCES

- Agrafiotis, P., Skarlatos, D. and Georgopoulos, A. (2019) 'Shallow Water Bathymetry Mapping From UAV Imagery Based On Machine Learning', (February 2020).
- Bajjouk, T., Mouquet, P., Ropert, M., Quod, J. P., Hoarau, L., Bigot, L., Le Dantec, N., Delacourt, C. and Populus, J. (2019) 'Detection of changes in shallow coral reefs status: Towards a spatial approach using hyperspectral and multispectral data', *Ecological Indicators*. Elsevier, 96(August 2018), pp. 174–191.
- Bandini, F., Olesen, D., Jakobsen, J., Kittel, C. M. M., Wang, S., Garcia, M. and Bauer-Gottwein, P. (2017) 'Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an Unmanned Aerial Vehicle', *Hydrology and Earth System Sciences Discussions*, pp. 1–23.
- Budhiman, S., Parwati, E. and Emiyati (2012) 'The Effect of the Extent of Coral Reef Area on Uniform Bottom Reflectance Determination for Water Column Correction Using Landsat ETM', *International Journal of Remote Sensing and Earth Sciences*, 9(2), pp. 88–99.
- Bue, I., Catalao, J. and Semedo, A. (2020) 'Intertidal Bathymetry Extraction with Multispectral Images : A Logistic Regression Approach', p. 24.
- Bukata, R., H.Jerome, J., Ya. Kondratyev, K. and V.Pozdnyakov, D. (1995) *Optical Properties and remote Sensing of inland coastal waters, crc.*
- Chand, S. and Bollard, B. (2021a) 'Estuarine , Coastal and Shelf Science Low altitude spatial assessment and monitoring of intertidal seagrass meadows beyond the visible spectrum using a remotely piloted aircraft system', *Estuarine, Coastal* and Shelf Science. Elsevier Ltd, 255(March), p. 107299.
- Chand, S. and Bollard, B. (2021b) 'Multispectral low altitude remote sensing of wild oyster reefs', *Global Ecology and Conservation*. Elsevier B.V., 30(September), p. 12.
- Chong, W. S., Mat Zaki, N. H., Hossain, M. S., Muslim, A. M. and Pour, A. B. (2021) 'Introducing Theil-Sen estimator for sun glint correction of UAV data for coral mapping', *Geocarto International*. Taylor & Francis, 0(0), pp. 1–30.

- Deyu, W., Xuezhi, F., Ronghua, M. A. and Guoding, K. (2007) 'A Method for Retrieving Water-leaving Radiance from Landsat TM Image in Taihu Lake , East China', (August 2014).
- Dörnhöfer, K. and Oppelt, N. (2016) 'Remote sensing for lake research and monitoring - Recent advances', *Ecological Indicators*. Elsevier Ltd, 64, pp. 105–122.
- Favoretto, F., Morel, Y., Waddington, A., Lopez-Calderon, J., Cadena-Roa, M. and Blanco-Jarvio, A. (2017) 'Testing of the 4SM method in the gulf of California suggests field data are not needed to derive satellite bathymetry', *Sensors* (*Switzerland*), 17(10), pp. 1–23.
- Gentile, V., Mróz, M., Spitoni, M., Lejot, J., Piégay, H. and Demarchi, L. (2016) 'Bathymetric Mapping of Shallow Rivers with UAV Hyperspectral Data', (Ictrs), pp. 43–49.
- Hafizt, M., Manessa, M. D. M., Adi, N. S. and Prayudha, B. (2017) 'Benthic Habitat Mapping by Combining Lyzenga's Optical Model and Relative Water Depth Model in Lintea Island, Southeast Sulawesi', *IOP Conference Series: Earth* and Environmental Science, 98(1).
- Hashim, M. and Misbari, S. (2015) 'Satellite-based Observation for Degradation and Loss of Seagrass Habitat in Shallow Coastal Waters in Straits of Johore', (June 2016).
- Hashim, M., Yahya, N. N., Ahmad, S., Komatsu, T., Misbari, S. and Reba, N. (2014)
 'Determination of seagrass biomass at Merambong Shoal in Straits of Johor using satellite remote sensing technique', *Malayan Nature Journal*, 66(JUNE), pp. 20–37.
- He, J., Lin, J., Ma, M. and Liao, X. (2021) 'Geomorphology Mapping topo-bathymetry of transparent tufa lakes using UAV-based photogrammetry and RGB imagery', *Geomorphology*. Elsevier B.V., 389, p. 107832.
- Hedley, J. D., Roelfsema, C. M., Chollett, I., Harborne, A. R., Heron, S. F., Weeks, S. J., Skirving, W. J., Strong, A. E., Mark Eakin, C., Christensen, T. R. L., Ticzon, V., Bejarano, S. and Mumby, P. J. (2016) 'Remote sensing of coral reefs for monitoring and management: A review', *Remote Sensing*, 8(2).
- Hedley, J., Roelfsema, C., Chollett, I. and Harborne, A. (2016) 'Remote Sensing of Coral Reefs for Monitoring and Management : A Review Remote Sensing of Coral Reefs for Monitoring and Management : A Review', (February).

- Hedley, J., Roelfsema, C. and Phinn, S. R. (2009) 'Ef fi cient radiative transfer model inversion for remote sensing applications', *Remote Sensing of Environment*. Elsevier Inc., pp. 6–11.
- Jagalingam, P., Akshaya, B. J. and Hegde, A. V. (2015) 'Bathymetry Mapping Using Landsat 8 Satellite Imagery', *Procedia Engineering*. Elsevier B.V., 116(Apac), pp. 560–566.
- Kabiri, K., Rezai, H. and Moradi, M. (2018) 'Mapping of the corals around Hendorabi Island (Persian Gulf), using WorldView-2 standard imagery coupled with field observations', *Marine Pollution Bulletin*. Elsevier, 129(1), pp. 266–274.
- Kim, J. S., Baek, D., Seo, I. W. and Shin, J. (2019) 'Retrieving shallow stream bathymetry from UAV-assisted RGB imagery using a geospatial regression method', *Geomorphology*. Elsevier B.V.
- Kirk, J. T. O. (1981) 'Estimation of the scattering coefficient of natural waters using underwater irradiance measurements', *Marine and Freshwater Research*, 32(4), pp. 533–539.
- Kishino, M. and Furuya, K. (2015) 'A new simplified method for the measurement of water-leaving radiance', pp. 29–38.
- Kuhn, C., de Matos Valerio, A., Ward, N., Loken, L., Sawakuchi, H. O., Kampel, M., Richey, J., Stadler, P., Crawford, J., Striegl, R., Vermote, E., Pahlevan, N. and Butman, D. (2019) 'Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity', *Remote Sensing of Environment*. Elsevier, 224(July 2018), pp. 104–118.
- Legleiter, C. J., Roberts, D. A. and Lawrence, R. L. (2009) 'Spectrally based remote sensing of river bathymetry', 1059(March), pp. 1039–1059.
- Liu, C., Zhou, X., Zhou, Y. and Akbar, A. (2020) 'Multi-temporal monitoring of urban river water quality using uav-borne multi-spectral remote sensing', *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives*, 43(B3), pp. 1469–1475.
- Lyzenga, D. (1981) 'Remote_sensing_of_bottom_reflectance_and.pdf', pp. 71-82.
- Manessa, M. D. M., Kanno, A., Sagawa, T., Sekine, M. and Nurdin, N. (2017) 'Simulation-based investigation of the generality of Lyzenga's multispectral

bathymetry formula in Case-1 coral reef water', *Estuarine, Coastal and Shelf Science*. Elsevier Ltd.

- Misbari, S. and Hashim, M. (2014) 'Evaluation of median filtering impact on satellitebased submerged seagrass mapping accuracy in tropical coastal water', 35th Asian Conference on Remote Sensing 2014, ACRS 2014: Sensing for Reintegration of Societies, (May 2015).
- Misbari, S. and Hashim, M. (2015) 'On models for estimation of submerged seagrass aboveground biomass in shallow coastal water', ACRS 2015 - 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, Proceedings, (August 2017).
- Misbari, S. and Hashim, M. (2016) 'Change detection of submerged seagrass biomass in shallow coastalwater', *Remote Sensing*, 8(3).
- Morgan, B. J., Stocker, M. D., Valdes-abellan, J., Kim, M. S. and Pachepsky, Y. (2019) 'Science of the Total Environment Drone-based imaging to assess the microbial water quality in an irrigation pond : A pilot study', *Science of the Total Environment*. Elsevier B.V., (xxxx), p. 135757.
- Mumby, P. J. (2000) Mapping Mangroves, Remote Sensing Handbook for Tropical Coastal Management.
- Muslim, A. M., Chong, W. S., Mohd Safuan, C. din, Khalil, I. and Hossain, M. S. (2019) 'Coral Reef Mapping of UAV : A Comparison of Sun Glint Correction Methods'.
- Pahlevan, N., Valadanzouj, M. J. and Alimohamadi, A. (2006) 'A Quantitative Comparison To Water Column Correction Techniques for Benthic Mapping Using High Spatial Resolution Data', *ISPRS Commission VII mid-term sympo*sium 'Remote Sensing: From Pixels to Processes', pp. 8–11.
- Rossi, L., Mammi, I. and Pelliccia, F. (2020) 'UAV-Derived Multispectral Bathymetry', pp. 1–20.
- Ruddick, K. G., Voss, K., Boss, E., Castagna, A., Frouin, R., Gilerson, A., Hieronymi,
 M., Johnson, B. C., Kuusk, J., Lee, Z., Ondrusek, M., Vabson, V. and Vendt,
 R. (2019) 'A Review of Protocols for Fiducial Reference Measurements of
 Water-Leaving Radiance for Validation of Satellite Remote-Sensing Data over
 Water'.

- Sagawa, T., Boisnier, E., Komatsu, T., Mustapha, K. Ben, Hattour, A., Kosaka, N. and Miyazaki, S. (2010) 'Using bottom surface reflectance to map coastal marine areas: A new application method for Lyzenga's model', *International Journal* of *Remote Sensing*, 31(12), pp. 3051–3064.
- Sagawa, T., Komatsu, T., Boisnier, E., Ben, K., Hattour, A., Kosaka, N. and Miyazaki, S. (2002) 'a New Applicaton Method for Lyzenga ' S Optical Model', *Evaluation*.
- Sagawa, T., Mikami, A., Komatsu, T., Kosaka, N., Kosako, A., Miyazaki, S. and Takahashi, M. (2008) 'Mapping seagrass beds using IKONOS satellite image and side scan sonar measurements: A Japanese case study', *International Journal of Remote Sensing*, 29(1), pp. 281–291.
- Sani, D. A. and Hashim, M. (2020) 'Satellite-Based Mapping Of Above-Ground Blue Carbon Storage In Seagrass Habitat Within The Shallow Coastal Water', XLII(October 2019), pp. 1–3.
- Shah, A., Deshmuk, B. and Sinha, L. K. (2020) 'A review of approaches for water depth estimation with multispectral data', pp. 152–167.
- Stumpf, R. P., Holderied, K., Spring, S. and Sinclair, M. (2003) 'Determination of water depth with high-resolution satellite imagery over variable bottom types', 48, pp. 547–556.
- Tamondong, A. M., Blanco, A. C., Fortes, M. D. and Nadaoka, K. (2013) 'Mapping Of Seagrass And Other Benthic Habitats In Bolinao , Pangasinan Using Worldview-2 Satellite Image', pp. 1579–1582.
- Vahtmäe, E., Kutser, T. and Paavel, B. (2020) 'Performance and applicability of water column correction models in optically complex coastal waters', *Remote Sensing*, 12(11).
- Yahya, N. N. (2012) Mapping of Sea Bottom Features using High Resolution Satellite Data. Universiti Teknologi Malaysia.
- Yahya, N. N., Hashim, M. and Ahmad, S. (2014) 'Remote Sensing of shallow sea floor for digital earth environment', *IOP Conference Series: Earth and Environmental Science*, 18(1).
- Ying, H., Xia, K., Huang, X., Feng, H., Yang, Y., Du, X. and Huang, L. (2021) 'Ecological Informatics Evaluation of water quality based on UAV images and

the IMP-MPP algorithm', *Ecological Informatics*. Elsevier B.V., 61(November 2020), p. 101239.

- Zeng, C., Richardson, M. and King, D. (2017) 'The impacts of environmental variables on water reflectance measured using a lightweight unmanned aerial vehicle (UAV) -based spectrometer system', *ISPRS Journal of Photogrammetry and Remote Sensing*. International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS), 130, pp. 217–230.
- Zharikov, V. V., Bazarov, K. Y., Egidarev, E. G. and Lebedev, A. M. (2018) 'Application of Landsat Data for Mapping Higher Aquatic Vegetation of the Far East Marine Reserve', *Oceanology*, 58(3), pp. 487–496.
- Zinke, P. and Flener, C. (2012) 'Experiences from the use of Unmanned Aerial Vehicles (UAV) for River Bathymetry Modelling in Norway'.
- Zoffoli, M. L., Frouin, R. and Kampel, M. (2014) Water column correction for coral reef studies by remote sensing, Sensors.

LIST OF PUBLICATIONS

Hafiz Saman and Mazlan Hashim, 2019, November. Optimization in Detection of Shallow Benthic Substrate by using Ensemble Analysis Method In Sibu Island, Malaysia. Hafiz Saman and Mazlan Hashim, IEEE Workshop on Geoscience and Remote Sensing.