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ABSTRACT 

Carbon dioxide (CO2) absorption is a matured technology for CO2 capture and 

natural gas purification process. However, the presence of the acid gas in the unit 

operation poses corrosion issues which need to be addressed to ensure integrity of the 

operation system is uncompromised. The present study explores and provides 

comprehensive information on the effects of process parameter variations on the 

corrosion behaviour of carbon steel in CO2 absorption systems using 

methylethanolamine (MEA) blended with methanol (MeOH) or N-methyl-2-

pyrrolidone (NMP) as aqueous and hybrid solutions. The process parameters of 

interest involved amine solutions type, temperature, and CO2 loading. The gravimetric 

and electrochemical experiments were carried out to investigate the corrosion 

behaviour of the carbon steel coupons in these solutions. The results indicated that the 

corrosion rate of carbon steels immersed in different amine solutions increased as the 

solution temperature and CO2 loading rose. The gravimetric results showed that the 

carbon steel coupons had the lowest corrosion rate were the ones immersed 

in MEA+MeOH. Both MEA aqueous and hybrid solutions were examined using 

Raman spectroscopy analysis and the surface of the carbon steel coupons 

subjected to the corrosion were studied using field emission scanning electron 

microscopy (FESEM). However, the Electrochemical Impedance Spectroscopy 

(EIS) results showed an opposite trend from the gravimetric results. This was 

because the carbon steel immersed in MEA+H2O had the highest resistance 

toward corrosion. For the electrochemical measurement method, unlike 

gravimetric measurement method, the surface of carbon steel coupons after the 

immersion was not scrubbed and straightaway brought for testing upon lifting from 

the solution. Hence, the high resistance detected could be due to the initiation of 

spontaneous passivation on the carbon steel coupons. Multivariable Power Least 

Squares Method (MPLSM) was adopted to further examine the relationship of the 

studied parameters to the corrosion behaviour of carbon steels immersed in solutions 

MEA+H2O and MEA+MeOH. The results showed a positive correlation for MEA

+H2O with the immersion time as the most prominent effect affecting 

polarization resistance. As for the MEA+MeOH, it was found that the lower R2 value 

of 0.5 indicated that the current measured parameters were not sufficient to represent 

the response data set. This implies the interaction between parameters could also 

affect the polarization resistance. The knowledge gained from this project could 

contribute to industries in reviewing the impact of organic solvents and improving on 

the corrosion issue in the operation.  

Norazmah Suhailah bt Abdul Malek 

Language Teacher DG48 

FSSH UTM Kuala Lumpur 
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ABSTRAK 

Penyerapan karbon dioksida (CO2) adalah teknologi matang untuk menangkap 

CO2 serta proses pembersihan gas asli. Walau bagaimanapun, kehadiran gas asid 

dalam operasi unit menimbulkan isu-isu kakisan yang perlu ditangani oleh industri 

untuk memastikan integriti sistem operasi tidak dikompromi. Kajian ini meneroka dan 

menyediakan maklumat yang komprehensif mengenai kesan variasi parameter proses 

ke atas tingkah laku kakisan keluli karbon dalam sistem penyerapan CO2 

menggunakan methylethanolamine (MEA) dicampur dengan metanol (MeOH) atau N-

methyl-2-pyrrolidone (NMP) sebagai penyelesaian akueda dan hibrid. Parameter 

proses minat melibatkan jenis penyelesaian amine, suhu, dan beban CO2. Eksperimen 

gravimetric dan elektrokimia telah dijalankan untuk menyiasat tingkah laku kakisan 

kupon keluli karbon dalam penyelesaian ini. Hasil eksperimen menunjukkan bahawa 

kadar kakisan keluli karbon yang tenggelam dalam penyelesaian amine yang berbeza 

meningkat sebagai suhu penyelesaian dan peningkatan beban CO2. Keputusan 

gravimetric menunjukkan bahawa kupon keluli karbon mempunyai kadar kakisan 

yang paling rendah adalah yang tenggelam dalam MEA+MeOH. Kedua-dua 
penyelesaian berair dan hibrid MEA telah diperiksa menggunakan analisis 

spekroskopi Raman dan permukaan kupon keluli karbon yang tertakluk kepada 

kakisan telah dikaji menggunakan imbasan pelepasan medan mikroskopi elektron 

(FESEM). Sebaliknya, keputusan Electrochemical Impedance Spectroscopy (EIS) 

menunjukkan trend yang bertentangan dari hasil gravimetric kerana keluli karbon yang 

direndam dalam MEA+H2O mempunyai rintangan tertinggi terhadap kakisan. Untuk 

kaedah pengukuran elektrokimia, tidak seperti kaedah pengukuran gravimetric, 

permukaan kupon keluli karbon selepas rendaman tidak disapu dan terus dibawa untuk 

ujian apabila mengangkat dari penyelesaian. Oleh itu, rintangan tinggi yang 

dikesan mungkin disebabkan oleh permulaan kepasifan spontan pada kupon keluli 
karbon. Kaedah Power Least Squares pelbagai variasi (MPLSM) telah diterima 

pakai untuk mengkaji lebih lanjut hubungan parameter yang dikaji kepada tingkah 

laku kakisan keluli karbon yang direndam dalam penyelesaian MEA+H2O dan 

MEA+MeOH. Keputusan menunjukkan korelasi positif untuk MEA+ H2O dengan 

masa rendaman sebagai kesan yang paling menonjol yang mempengaruhi rintangan 

polarisasi. Bagi MEA+MeOH, ia mendapati bahawa nilai R2 yang lebih rendah 

sebanyak 0.5 yang menunjukkan bahawa parameter diukur semasa tidak mencukupi 

untuk mewakili set data tindak balas. Ini menunjukkan bahawa interaksi antara 

parameter juga boleh menjejaskan rintangan polarisasi. Adalah dijangkakan 

bahawa pengetahuan yang diperoleh daripada projek ini boleh menyumbang 

kepada industri untuk mengkaji kesan pelarut organik dalam meningkatkan isu 

kakisan dalam operasi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

It is imperative to remove the acidic gases such as carbon dioxide (CO2) from 

a gas stream like natural gas to achieve the pipeline standard specification for the 

business distribution that is applied at industrial scale [4]. The process can also be 

applied to flue gas from combustion process to alleviate greenhouse gas emission to 

the environment [4]. High CO2 content will reduce the market value of natural gas and 

cause corrosion in the pipeline if the gas is exposed to water [4]. Hence, prudent 

strategies of CO2 separation are required to optimize both the capital and the operating 

expenses of carbon capture technology.  

The removal of CO2 through absorption process using chemical absorbent is 

more commonly carried out than physical absorbent due to their better performance of 

CO2 absorption at low CO2 partial pressure [5]. Additionally, with the emergence of 

aqueous alkanolamine solutions, chemical absorption is considered as one of the 

leading matured carbon scrubbing technologies in recent years [5]. Alkanolamine such 

as monoethanolamines (MEA), methyldiethanolamine (MDEA), diethanolamine 

(DEA) and di-2-propanolamine (DIPA) solutions have been frequently used for CO2 

absorption process [5]. However, material corrosion is one of the drawbacks associated  

these alkanolamine solutions .  In the real industry application, when they are in contact 

with tubing lines and the absorption vessel unit made of carbon steel during the 

chemical absorption process, the tubing and vessel would be susceptible to the 

phenomena of corrosion [6, 7]. Carbon steel is usually adopted as the construction 

material for many industrial units, inclusive of the chemical absorption unit operations. 

In fact, the production of carbon steel accounts for almost 85 % of the total annual 

steel production worldwide due to its lower costcompared to other types of alloy [6]. 
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Consequently, the chemical absorption units made up of carbon steel are susceptible 

to corrosion in the real industry applications [7]. 

 

Carbon steel corrosion is a non-desired phenomenon that causes degradation 

of pipes, and unit operations in the plants. From economic perspective, it is very 

important to understand the corrosion behavior of carbon steel since every significant 

investment on plant's equipment or system counts [8].  

Various types of corrosion can happen in an amine-based CO2 absorption unit. 

These include uniform corrosion, erosion-corrosion, pitting corrosion, intergranular 

corrosion, crevice corrosion, , and stress corrosion cracking (SCC) [9]. Generally, 

catastrophic failure of major equipment or a plant due to corrosion problem is 

intolerable. To further elaborate, the corrosion in CO2 absorption plants poses 

significant negative impacts on the industrial economics as well as the safety of plant 

personnel. The plants could suffer from the losses of revenue due to equipment 

downtime, cost of repair for the corroded process component, production losses and 

shortening of equipment life span [10]. According to Greck [11], revenue loss up to 

RM 1.36 million per day was reported in an amine plant with the production capacity 

of 100 MMscf (million standard cubic feet) due to corrosion-related repairs. The 

World Factbook 2017 also provided the information as in Figure 1.1 which shows the 

data of global cost of corrosion by different categories. The global cost of corrosion is 

estimated to be RM 10.19 trillion per year [11].  

 

Figure 1.1 Data of cost corrosion study from National Association Corrosion 

Engineer (NACE) corrosion report. Adopted from Impact, N.E, 2017 [8].  
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In recent years, a new dedicated hybrid formulation is adopted by Total to 

improve CO2 absorption performance of chemical absorption process. It is a 

replacement for the conventional alkanolamine aqueous solvent that allows to remove 

various acid gases simultaneously. The hybrid solvent is a mixture of physical and 

chemical absorbents whereby its capability to remove CO2 is optimized [12]. There 

are numerous studies highlighting different hybrid solvents which are composed of 

amines such as MEA, Aminomethyl propanol (AMP), and, Dimethylethanolamine 

(DMEA) with acetal compounds are adopted for CO2 absorption. One of the acetal 

compounds, 2,5,7,10-tetraoxaundecane (TOU) plays as a physical absorbent is 

observed to improve the performance of CO2 absorption significantly compared to 

other compounds [13]. Another study also found that hybrid solvent consisted of MEA, 

N-Methyl-2-pyrrolidone (NMP) and water was able to improve the CO2 removal from 

natural gas with high CO2 concentration, compared to the common MEA aqueous 

solvent [14]. Additionally, hybrid solvent of MEA mixed with methanol (MeOH) was 

reported to be able to increase the CO2 absorption performance [15]. With these 

findings, MEA is regarded as the first-generation benchmark and most well-known 

amine that makes up hybrid solvents for CO2 capture. The characteristics such as high 

reactivity and fast absorption rate are among the major reasons for alkanolamine (or 

MEA specifically) to be widely used in CO2 absorption processes [16, 17]. However, 

MEA is very corrosive and this is affirmed by the literatures [18]. Although hybrid 

solvents had been proven to improve CO2 absorption performance, the high corrosion 

potential of MEA could potentially limit its application for CO2 capture. Therefore, 

prior to the expansion of the applications of MEA hybrid solvents,  it is necessary to 

understand the corrosion behaviour of these solvents, especially when they are in 

contact with carbon steel.  

1.2 Problem Statement 

In the previous studies, the corrosion phenomena of carbon steels in the 

aqueous alkanolamine solvent had been investigated by probing the effects of absence 

or presence of water, CO2 loading as well as process temperature [5, 19, 20]. 

Furthermore, the emergence of alkanoamine hybrid solvents has also started to gain 
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attention for application of CO2 capture in recent years [12]. Even so, the corrosion 

behaviour of these alkanolamine hybrid solvent is scarely available. Such missing data 

has challenged the design of engineering materials which can sustain corrosion in post-

combustion capture (PCC) technology and natural gas purification process. Therefore, 

it is the interest of this study to further elucidate the corrosion behaviour of carbon 

steel when in contact with alkanolamine hybrid solvent. In this study, the alkanolamine 

hybrid solvents composed of physical absorbents (NMP and MeOH) and chemical 

absorbent (MEA) were chosen. NMP was able to improve the CO2 removal from acid 

gases through absorption process [14], while MeOH was able to decrease the rate of 

deprotonation hereby enhancing the diffusivity and solubility of CO2 in it [15]. As of 

MEA, it was reckoned to have high corrosiveness and regarded as the first-generation 

benchmark [16, 17, 18].  

1.3 Research Objectives  

The objectives of this study are: 

i. To characterize the surface morphology changes of carbon steel in MEA aqueous 

solvent (MEA-H2O) and MEA hybrid solvents (MEA-NMP-H2O, MEA-NMP, 

MEA-MeOH-H2O & MEA-MeOH).  

ii. To investigate the effect of the process condition (i.e. temperature and CO2 loading) 

on the corrosion of the carbon steel in MEA aqueous solvent (MEA-H2O) and 

MEA hybrid solvents (MEA-NMP-H2O, MEA-NMP, MEA-MeOH-H2O & MEA-

MeOH) based on gravimetric techniques. 

iii. To evaluate the electrochemical characteristics of carbon steel in the MEA solvent 

with the least corrosion impact and the significance of process condition to the 

corrosion behaviour.  
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1.4 Scope of Study 

To establish the design of this study, the specific concentration of chemical 

absorbent of MEA for both the aqueous and hybrid solvents was fixed at 20 wt% which 

it was the median point of the concentrations commonly adopted (10-30 wt%) in 

previous studies [21]. Furthermore, it was also reported that the optimal MEA 

concentration in water was in the range of 20-30 wt% [22]. Therefore, concentrations 

of the MEA aqueous and hybrid solvents studied in this work are as listed as follows:  

1. 20 wt% MEA + 80 wt% H2O (named as MEA-H2O solvent) 

2. 20 wt% MEA + 40 wt% NMP + 40 wt% H2O (named as MEA-NMP-H2O solvent) 

3. 20 wt% MEA + 80 wt% NMP (named as MEA-NMP solvent) 

4. 20 wt% MEA + 40 wt% MeOH+ 40 wt% H2O (named as MEA-MeOH-H2O solvent) 

5. 20 wt% MEA + 80 wt% MeOH (named as MEA-MeOH solvent) 

The gravimetric technique was employed to compare the effect of process 

conditions of the carbon steels. Then, these carbon steels’ surface were characterized 

via Field Emission Scanning Electron Microscope (FESEM) and the solutions were 

characterized via Raman Spectroscopy. Subsequently, the MEA solution which had 

the least corrosion of the gravimetric outcome was further analyzed via the 

electrochemical technique. Finally, the significance of each process parameters was 

determined using the multivariable power least squares method (MPLSM). Ultimately 

the criteria of the best solvent was justified throughout the quantum of the 

investigations.   

1.5 Significance of Study  

The addition of the organic solvent into the amine-based solvent was found to 

improve the CO2 absorption process effectively. The findings had been encouraging 



6 

 

enough to merit further investigation on the corrosion behaviour of carbon steels in 

these organic solvents. This study will provide a greater level of understanding for the 

industries to review the potential technique in developing new corrosion-resistant 

materials or technologies, thereafter. 
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