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ABSTRACT 

Focused ion beam (FIB) technique uses a focused beam of ions to scan the 

surface of a specimen, analogous to the way scanning electron microscope utilizes 

electrons. Recent developments of FIB technology have emerged as one of the most 

advanced multifunctional platforms for nanofabrication. It is a versatile tool for 

material removal with high accuracy at nanoscale. As a consequence, FIB has 

become increasingly popular among researchers for fabrication of nanopore 

structures. Nanopores are generally categorized as biological nanopores and solid-

state nanopores. Biological nanopores are highly reproducible but suffer from 

shortcomings such as fixed pore size, mechanical instability and operate within 

minimal ranges of pH and temperature. Solid-state nanopores, in contrast, are 

favorable due to their robustness, controllable morphology, and high stability in 

various environmental conditions. Hence, solid-state nanopores fabricated using FIB 

are the focus of this research. Fabricating nanopore on silicon substrate using FIB is 

doubtless challenging in order to achieve fine structure and tip diameter less than 50 

nm. These problems can be rectified by utilizing high-quality nanopores with 

relatively small tip diameter, an appropriate pore shape and proper materials. The 

ability to control the diameter of nanopores across a range of dimensions is 

considered crucial for this research. A smooth and fine surface of nanopore is 

challenging to obtain as it requires the proper selection of FIB parameters. Therefore, 

operating the milling process with appropriate FIB parameter selection is essential to 

achieve successful FIB milling. An acceleration voltage of 30 kV and beam current 

of 18 pA were used throughout this experiment. It was found that milling from the 

outer to the inner direction produced a better nanopore structure with less 

redeposition and a smaller tip. The nanopores milled using one-step FIB milling on 

silicon substrate resembled a conical-shaped structure. The maximum width and 

depth were measured at the base and tip of the nanopores, respectively. The milling 

diameter of 800 nm and depth of 1500 nm were found to be successfully employed to 

fabricate nanopores with tip diameter of 49.5 nm on thick silicon substrate. A smaller 

tip diameter was obtained when the aspect ratio was more than 1. These findings 

suggest that lowering the upper base diameter and increasing the depth may reduce 

the bottom tip diameter. The overall trend demonstrated that as the aspect ratio 

increases or milling depth increases, the angle of the nanopore sidewall gets more 

gradual and the conical shape becomes more defined. Finally, a nanopore with tip 

diameter of 49.2 nm was also demonstrated on thin silicon substrate using optimal 

parameters. In conclusion, this study provides greater insight into the nanopore 

fabrication process using FIB. It may serve as an important study for application of 

DNA sequencing and more applications involving solid-state nanopores.   
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ABSTRAK 

Teknik pancaran ion terfokus (FIB) menggunakan pancaran ion terfokus 

untuk mengimbas permukaan spesimen, sama seperti cara pengimbasan mikroskop 

elektron menggunakan elektron. Perkembangan terkini teknologi FIB telah muncul 

sebagai salah satu platform pelbagai fungsi yang paling maju untuk fabrikasi nano. Ia 

adalah alat serba boleh untuk penyingkiran bahan dengan ketepatan tinggi pada skala 

nano. Sebagai akibatnya, FIB telah menjadi semakin popular di kalangan penyelidik 

untuk fabrikasi struktur nanopori. Nanopori secara amnya boleh dikategorikan 

sebagai nanopori biologi dan nanopori bukan biologi. Nanopori biologi mempunyai 

kelebihan iaitu mudah dihasilkan semula tetapi mengalami kekurangan seperti saiz 

lubang yang tetap, ketidakstabilan mekanikal dan hanya boleh beroperasi pada julat 

pH dan suhu yang sangat terhad. Nanopori bukan biologi pula berbeza, ia 

mempunyai kelebihan kerana kekukuhannya, struktur yang boleh dikawal, dan 

kestabilan yang tinggi dalam pelbagai keadaan persekitaran. Oleh itu, nanopori 

bukan biologi yang direka menggunakan pancaran ion terfokus telah diperkenalkan 

dalam kajian ini. Fabrikasi nanopori pada substrat silikon menggunakan FIB sudah 

pasti mencabar untuk mencapai struktur halus dan diameter hujung kurang daripada 

50 nm. Masalah ini dapat diperbetulkan dengan menggunakan nanopori berkualiti 

tinggi dengan diameter hujung yang agak kecil, bentuk liang yang sesuai dan bahan 

yang sesuai. Keupayaan untuk mengawal diameter nanopori merentasi pelbagai 

dimensi dianggap penting dalam kajian ini. Permukaan nanopori yang licin dan halus 

adalah mencabar untuk diperolehi kerana ia memerlukan pemilihan parameter FIB 

yang betul. Oleh itu, pemilihan parameter FIB yang sesuai adalah penting untuk 

menjayakan kisaran FIB. Voltan pecutan 30 kV dan arus 18 pA telah digunakan 

sepanjang eksperimen ini. Didapati bahawa kisaran dari arah luar ke dalam 

menghasilkan struktur nanopori yang lebih baik dengan kurang pemendapan semula 

dan hujung yang lebih kecil. Nanopori dihasilkan menggunakan kisaran FIB satu 

langkah pada substrat silikon menyerupai struktur berbentuk kon. Lebar maksimum 

dan kedalaman maksimum boleh diukur pada pangkal dan hujung nanopori. 

Diameter kisaran 800 nm dan kedalaman 1500 nm didapati berjaya digunakan untuk 

menghasilkan nanopori dengan diameter hujung 49.5 nm pada substrat silikon tebal. 

Diameter hujung bawah yang lebih kecil boleh diperolehi apabila nisbah aspek lebih 

daripada 1. Ini menunjukkan bahawa apabila nisbah aspek meningkat atau 

kedalaman kisaran meningkat, sudut dinding sisi nanopori bentuk kon menjadi lebih 

jelas. Akhir sekali, nanopori dengan diameter hujung 49.2 nm juga ditunjukkan pada 

substrat silikon nipis menggunakan parameter optimum yang ditemui dari objektif 

pertama. Kesimpulannya, kajian ini memberikan gambaran yang lebih mendalam 

tentang proses fabrikasi nanopori menggunakan FIB. Ia mungkin berfungsi sebagai 

kajian penting untuk aplikasi penjujukan DNA dan lebih banyak aplikasi yang 

melibatkan nanopori bukan biologi.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Focused ion beam is still relatively new but has emerged as one of the most 

advanced multifunctional platforms for nanofabrication. It is a versatile tool for 

material removal with high accuracy at nanoscale. FIB was specially recognized as 

an attractive tool for the fabrication of micro- and nanostructures with complex 

geometries and shapes. Therefore, FIB has become increasingly popular among 

researchers for fabrication of nanopore structures [1,2]. 

There are three basic operation modes of FIB which are imaging, milling and 

deposition as shown in Figure 1.1. During imaging, FIB system uses a focused beam 

of ions scanned over the surface of material. The bombardment results in electron 

emission which also allows imaging of the sample as shown in Figure 1.1(a). The 

electrons are collected on a biased detector for secondary electrons. Apart from 

secondary electrons, secondary ions also can be emitted which also can achieve 

functions such as ion beam imaging and spectral analysis.   

Figure 1.1(b) shows the milling process or also known as material removal 

takes place when the ion beam is bombarded on the surface of the substrate. The 

surface atoms will be sputtered when they received enough energy than the surface 

binding energy. It is a direct write process through which any given pattern can be 

transferred onto a substrate through the impingement of energetic ions.  

On the other hand, when the energy of incident ions is smaller than the 

surface binding energy, deposition can be accomplished by adding extrinsic 

conditions such as gas molecules as shown in Figure 1.1(c). Deposit materials are 

often given by an internal gas delivery system that uses a gas injection mechanism to 



2 

expose a chemical component near the site of impact. Furthermore, if the ion is not 

backscattered off of the sample surface, it will eventually implanted in the solid 

material at a depth below the sample surface, changing the material's surface 

properties. 

 

Figure 1.1 Principle of FIB (a) imaging, (b) milling, and (c) deposition [3] 

Nanopore technology is a nanometer hole or channel embedded in a thin free-

standing membrane structure to identify the potential change when charged 

molecules smaller than the nanopore pass through the hole. Nanopore technology has 

recently emerged as one of the most appealing options for detecting and sequencing 

single-molecule such as protein, deoxyribonucleic acid (DNA) and ribonucleic acid 

(RNA). It is considered to be low cost, high-throughput and faster method [4-6]. The 

central idea of nanopore technology is derived from Coulter counter’s principle. The 

idea was proposed independently by multiple research groups in the mid-1990s [7-9]. 

Generally, nanopores can be categorized as biological nanopores and solid-state 

nanopores.  
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Biological nanopores such as α-hemolysin, mycobacterium smegmatis porin 

(MspA) and bacteriophage phi29 motor are pore-forming proteins that self-assemble 

into lipid bilayer membranes. Biological nanopores are protein molecules that have 

been formed artificially or naturally through genetic engineering. α-hemolysin is the 

major cytotoxic agent secreted by the human pathogen Staphylococcus aureus, and it 

was the first bacterial ecotoxin to be recognized as a pore former. Meanwhile, MspA 

is an outer membrane porin isolated from mycobacterium smegmatis. It has a funnel 

shaped octameric channel pore with ~1.2 nm constriction and channel long of 0.6 nm 

channel long, allowing the movement of water-soluble molecules across the 

membranes. Phi29 is a motor channel from bacteriophage phi29 protein channel. The 

channel diameter of phi29 is larger than other protein channel, it possesses a channel 

with 3.6-6.0 nm wide which allows the translocation of larger molecule. 

Biological nanopores are highly reproducible but suffer from shortcomings 

such as fixed pore size, mechanical instability and can operate over minimal ranges 

of pH and temperature. The limitations of biological nanopores have been addressed 

using solid-state nanopores created from artificially punctured pores in free standing 

membrane such as silicon, polymer and 2D membranes. Compared to biological 

nanopores, solid-state nanopores were advantageous due to their robustness, tunable 

shape, and excellent stability under various environmental conditions [9]. 

Furthermore, they are also readily integrated with on-chip electronics, nanofluidic or 

other nanodevices which can generate higher throughput. 

Solid-state nanopores can be fabricated on various materials such as silicon, 

polymers, glass and single-layer membrane. Silicon is the most widely used material 

in semiconductor technology as it is compatible with most of the semiconductor 

processes, which are key components of various electronic devices. The subsequent 

processing and modification of the silicon-based nanopore are relatively easy to 

achieve. Silicon is inexpensive and durable, making it much easier to control 

thickness and pore size during nanopore fabrication. Compared to 2D materials such 

as graphene, which are mechanically less stable than thick membranes, their 

mechanical instability is more of a concern where they usually need a supporting 

structure.   
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Various approaches have been reported to fabricate solid-state nanopore. 

Current state of the art methods for nanopore fabrication include focused ion beam 

(FIB) milling, electron beam lithography (EBL), assisted reactive ion etching (RIE), 

focused electron beam (FEB) milling using a transmission electron microscope 

(TEM), ion track etching and dielectric breakdown [10-12]. For example, EBL-

assisted RIE requires many steps such as resist spin-coating, patterning by EBL and 

nanopore formation by RIE. However, this method is tedious because it requires two 

equipment. The major drawback of this method is that it requires hours to form 

patterns at the wafer scale. EBL requires a large up-front capital investment due to 

expensive equipment compared to standard photolithography.  

Another method such as dielectric breakdown is performed by applying 

transmembrane potential, which will generate an electric field and charges the 

interface with opposite ions. There will be a leakage of current through the 

membrane, traps are accumulated and finally pores are formed. However, it has poor 

controllability over the number of nanopores formed. It also lacks the capability for 

scalable production. Therefore, FIB milling has become one of the most desirable 

technologies for fabricating nanopores owing to its excellent resolution and ability to 

execute direct patterning [9].   

In this study, solid-state nanopores were chosen and fabricated on silicon 

substrate using one-step FIB milling. One-step milling is a maskless direct milling 

method. During FIB milling, the scan method should be determined first based on the 

desired fabrication structure which is nanopore with conical-shaped and tip diameter 

less than 100 nm.  Firstly, the milling direction was determined first either milling 

from outer to inner or inner to outer direction. Next, an appropriate ion beam current 

and other milling parameters such base diameter and depth were chosen to improve 

fabrication efficiency and nanopore structure. The nanopores were first fabricated on 

thick silicon substrate to find the optimal milling parameters which can fabricate 

nanopore with tip diameter less than 100 nm. Thick silicon substrate is the original 

silicon substrate with thickness of 500 µm without any pre-thinning process. 

Afterward, nanopore structure with the smallest tip diameter was fabricated on thin 

silicon substrate to study its repeatability. The thin silicon substrate is the silicon 
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substrate that has been reduced in thickness until it matches the nanopore depth. FIB 

was also used to perform a cross-sectional and field emission scanning electron 

microscope (FESEM) to validate the nanopore in terms of morphology such as 

redeposition. 

1.2 Problem Statement 

Utilizing solid-state nanopores technology is preferable due to its long-read 

ability, high-throughput detection and allowing direct sensing. However, it presents 

significant challenges in terms of nanopore structure and fabrication process. It 

requires precise dimensional control of nanopores structure with nanometers 

precision in a solid membrane. In contrast, biological nanopores are built with a pore 

forming protein that self-assembles into lipid bilayer membranes, simplifying the 

operation. Therefore, establishing a reliably controllable nanopore fabrication 

method is very important. 

It had been reported that EBL had successfully fabricated sub-10 nm 

nanopores [10]. Nevertheless, this approach is not desirable owing to their 

complicated and slow processing steps. Moreover, other techniques such as dielectric 

breakdown and ion-track etching are also not preferable as it yields pore size with 

poor distribution. Consequently, an alternative fabrication method using FIB direct 

milling technology has been explored. Fabrication of nanopores through FIB direct 

milling presents possibilities for controlling material modifications and patterning 

crucial dimensions in the nanometer range [12-16]. Compared to EBL, which 

involves additional processing steps, FIB milling is a one-step method that allows for 

direct writing and can aid the rapid fabrication of nanopores. Although FIB methods 

are highly versatile nanofabrication methods, some restrictions or negative secondary 

effects are connected with their use. 

Attaining nanometre scale pore sizes is doubtless challenging. These 

problems require high-quality nanopores with relatively small pore size, an 

appropriate pore shape and proper materials. The ability to adjust the diameter of 
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pores across a range of dimensions is considered crucial. Smooth and fine surface of 

nanopore is difficult to obtain as it requires the proper selection of FIB parameters. 

Therefore, the ability to operate the milling process with appropriate FIB parameter 

selection is essential to successful FIB direct milling. A suitable choice of parameters 

such as beam current, acceleration voltage, pattern size, and scan direction is 

required to achieve a structure with critical dimension and fine surface. Hence, it is 

essential to understand the fundamental phenomenon of the milling process. 

Besides, the major effect of milling such as redeposition and surface 

roughness also important. Fabrication of high aspect ratio nanopores is known to be 

difficult due to the influence of redeposition. The redeposition effect can be 

minimized by FIB milling with a low current. The conical-shaped structure was 

chosen since it has been demonstrated experimentally to provide a significantly faster 

transport rate with less membrane resistance than an analogous cylindrical shape 

nanopore structure. The reliability and reproducibility of the nanopores also need to 

be considered. Our investigation involves relatively thick membranes. Besides, thick 

and thin membranes are included in determining whether high aspect ratio features 

can be fabricated reproducibly. Therefore, in this study, the milling strategy is very 

important to obtain nanopores with conical-shaped on silicon substrate using one-

step FIB milling. 

1.3 Significance of Research 

This research will provide a better understanding on the fabrication of 

nanopores on silicon substrate using one-step FIB milling. FIB is a versatile tool for 

fabrication of pore with high accuracy at nanoscale. It is possible to fabricate a high 

aspect ratio nanopore by selecting proper milling parameters. Therefore, a 

fundamental insight on the effects of FIB milling parameters on the structure of 

nanopore can be obtained. The fundamental understanding and information gained 

from this study will help experimentalists to realize the nanopore fabrication process. 

This new finding can also support the ecologically sustainable development of 

nanotechnology field especially in Malaysia and other countries as well. 
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1.4 Research Objectives 

The aim of this research is to fabricate nanopore on silicon substrate using 

one-step focused ion beam milling. There are three objectives and they are described 

as follows: 

i. To evaluate the effects of milling parameters in terms of diameter and 

depth on nanopore structure fabricated on thick silicon substrate using 

one-step focused ion beam milling. 

ii. To examine the fabrication of nanopore via optimal parameters on 

thin silicon substrate using one-step focused ion beam milling. 

iii. To validate the nanopores morphology using field emission scanning 

electron microscope. 

1.5 Research Scope 

This study will focus on fabricating nanopores on silicon substrate using FIB. 

Dual-beam focused ion beam-field emission scanning electron microscope (FIB-

FESEM) from Fei (Helios Nanolab G3 UC) was used to fabricate the nanopores. 

Firstly, nanopores were fabricated on thick silicon substrate to evaluate the effects of 

FIB parameters on the structure of nanopores. The bottom tip of the nanopore aimed 

at least 100 nm diameter. The FIB parameters such as beam current, voltage, pattern 

size (i.e., diameter and depth) and milling direction were controlled to optimize the 

nanopore structure. Next, the optimal parameters obtained from the previous method 

were used to fabricate nanopore on a thin silicon substrate. The silicon substrate was 

thinned out using hand lapping polisher and cross-section polisher. Besides, the 

morphology such as redeposition was also validated by using FESEM. The details of 

this scope were discussed in chapter 3. 



8 

1.6 Thesis Outline 

This thesis consists of five chapters. Chapter 1 is an introductory part, which 

provides an overview of this research. It begins with research background of FIB and 

nanopore technology. Next, current problems associated with the fabrication of 

nanopores are also described. In addition, this chapter also states the significance of 

the research, the objectives and the scopes.  

Following the introduction in chapter 1, the rest of the thesis is structured as 

follows. Chapter 2 is the literature review that explains the basic principles of 

nanopore technology. Besides that, recent advances related to biological and solid-

state nanopores were also reviewed. This chapter also presents the fabrication 

process involving solid-state nanopores. Furthermore, the FIB and FESEM 

mechanisms were also explained. 

Chapter 3 consists of the methodology used in this study. Research flowchart 

is presented consisting of all the scopes. This chapter elaborates on the experimental 

method for nanopore fabrication and structural validation process.  

Chapter 4 discusses the fabrication approach we have explored to obtain 

nanopore with the smallest tip diameter on the silicon substrate using FIB. The 

fabrication process includes evaluation of FIB parameters and structural validation is 

discussed in this chapter. Lastly, chapter 5 summarizes and concludes the thesis. 

Future works and potential application were also included in this chapter. 
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