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ABSTRACT 

 

 

 

Researchers have attempted to identify the best approach to utilize the 

Magnetorheology (MR) material such as in resistivity sensing-based devices. 

Magnetorheological Elastomer (MRE) material has attracted researchers due to its broad 

applications that require high electrical conductivity. However, the properties of MRE in 

a solid-like form is too rigid to be molded into certain devices, making the particles inside 

the matrix structure to remain trapped, thus resulting in poor electrical conductivity. 

Therefore, Magnetorheological Plastomer (MRP) is introduced which offers a new 

sensing capability due to its flexibility, soft nature, responsiveness to external magnetic 

field and simultaneously, conducts electricity. In this study, the rheology and resistance 

properties of Graphite (Gr) based Magnetorheological Plastomer (MRP) have been 

studied to enhance the electrical conductivity while maintaining the rheological 

properties. Even though previous studies have proven the capability of Gr in MRP in 

electrical and rheological properties, the effects of Gr in MRP are still low due to the use 

of non-conductive material as a matrix. Therefore, Polyvinyl Alcohol (PVA) material was 

used as a conductive matrix together with MRP with various content of Gr, from 0 to 10 

wt.%, and the magnetic field-dependent electrical property was tested. The morphological 

aspect of Gr-MRP was identified using environmental scanning electron microscopy 

(ESEM). Besides, the magnetic property of MRP and Gr-MRP was tested using a 

vibrating sample magnetometer (VSM). The resistance value of Gr-MRP was assessed 

using a test rig under various applied magnetic flux densities. The results showed that the 

resistance of Gr-MRP decreased with the increase of Gr content up to 10 wt.%. The 

resistivity value reached a plateau at 400mT, with a value of 1.35×104 kΩ.m, possibly 

caused by the movement of Gr and CIPs assisted by an external magnetic field. Hence, 

the possible particle movement mechanism related to Gr and CIPs was also discussed. 

Moreover, the samples' electrical conductivity showed a proportional response to the 

addition of Gr value. The electrical conductivity of 10 wt.% Gr–MRP material was found 

to be the highest, approximately 178.06% as compared to 6 wt.%. It was also observed 

that with the addition of Gr, the conductivity properties were improved with the 

increasing of magnetic flux densities, while maintaining the storage modulus verified by 

using rheometer. This could contribute to the practicality of this material as a sensing 

detection device.       
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ABSTRAK 

 

 
Para penyelidik telah cuba mengenal pasti kaedah terbaik melalui penggunaan 

magnetorheologi (MR) untuk kegunaan dalam bidang peranti berasaskan pengesanan 

rintangan. Bahan Elastomer Magnetorheologi (MRE) telah menarik minat para penyelidik 

kerana bahan tersebut mempunyai konduktiviti elektrik yang tinggi untuk pelbagai aplikasi. 

Walaubagaimanapun, sifat MRE dalam bentuk pepejal adalah keras untuk diubah bentuk dan 

dimasukkan ke dalam beberapa peranti tertentu, menyebabkan zarah-zarah di dalam maktriks 

kekal terperangkap, mengakibatkan konduktiviti elektrik yang rendah. Untuk mengatasinya, 

bahan Plastomer Magnetorheologi (MRP) telah diperkenalkan kerana kebolehan fleksibiliti, 

boleh dibentuk, bertindakbalas dengan magnet dan dapat mengalirkan arus elektrik. Dalam 

kajian ini, sifat reologi dan rintangan bagi bahan Grafit (Gr) berasaskan Plastomer 

Magnetorheologi (MRP) telah dikaji untuk meningkatkan kekonduksian elektrik sambil 

mengekalkan sifat rheologi. Walaupun kajian telah membuktikan kebolehan penggunaan Gr 

dalam MRP untuk pengaliran dan sifat reologi, kesan Gr dalam MRP masih kekal rendah 

disebabkan penggunaan bahan bukan konduktif sebagai matriks. Oleh itu, bahan Polyvinyl 

Alkohol (PVA) telah digunakan sebagai matriks konduktif bersama dengan Gr untuk 

meningkatkan konduktiviti elektrik sambil mengekalkan sifat rheologi. Sampel MRP dan 

pelbagai kandungan Gr, dari 0 hingga 10 wt.%, telah disediakan, dan sifat daya medan 

magnet yang bergantung kepada arus elektrik telah dinilai secara eksperimen. Aspek 

morfologi Gr-MRP telah dikenalpasti menggunakan peralatan mikroskop elektron 

pengimbasan alam sekitar (ESEM). Di samping itu, sifat daya medan magnet MRP dan GR-

MRP telah dinilai menggunakan peralatan magnetometer sampel bergetar (VSM). Nilai 

rintangan Gr- MRP telah diuji menggunakan rig ujian dengan pelbagai ketumpatan fluks 

magnet. Hasil pengujian telah menunjukkan bahawa nilai rintangan Gr-MRP menurun 

dengan peningkatan Gr sehingga 10 wt.%. Pada 400mT, daya rintangan menurun hingga 

1.35 × 104 kΩ.m, disebabkan oleh pergerakan Gr dan CIP yang dibantu daya medan magnet 

luar. Oleh itu, mekanisme pergerakan zarah yang berkaitan dengan Gr dan CIP juga telah 

dibincangkan. Selain itu, konduktiviti elektrik menunjukkan kenaikan dengan pertambahan 

Gr. Konduktiviti elektrik bagi bahan 10 wt.% Gr-MRP didapati tertinggi, 178.06% 

berbanding 6 wt.%. Hasil eksperimen juga mendapati dengan penambahan Gr, sifat 

konduktiviti elektrik telah bertambah baik dengan peningkatan intensiti magnetik, sementara 

mengekalkan modulus dengan menggunakan reometer. Perkara ini dapat menyumbang 

kepada potensi kegunaan bahan-bahan ini sebagai peranti alat pengesanan.
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CHAPTER 1 

 

 

 
INTRODUCTION 

 

 

 

1.1 Research Background 

 

 
Flexible electronic sensors have attracted a lot of attention in recent years 

because of their remarkable flexibility and potential applications. This kind of sensor 

has been widely applied nowadays in many practical applications such as in 

automotive [1], aerospace [2], manufacturing [3], and even human motion monitoring 

[4]. Conventional electronic sensors made of semiconductors and metallic materials, 

as well as flexible strain devices, offer great sensing sensitivity [5], outstanding 

stretchability [6], and the ability to detect both small and big movement [7]. In 

particular, a number of smart materials is getting considerable attention by gaining a 

lot of interest in a broad range of applications. Potential smart materials include 

electrorheological materials, electroactive polymers, and magnetorheological (MR) 

materials. MR materials are one example of a material that could be employed in smart 

devices. 

 
MR materials belong to an important part of the field of smart materials, which 

their rheological properties change rapidly with magnetic field. More specifically, 

when the external stimulus such as magnetic field is exerted, the rheological properties 

of MR materials can be quickly tuned or controlled due to the chain formation structure 

according to the field direction [8]. MR materials can be classified into many groups 

such as MR fluid (MRF), MR elastomer (MRE), MR foam, MR grease (MRG), MR 

gel and MR plastomer (MRP) [9-14]. Recently, MRP has received growing attention 

due to better stability and higher MR effect than other MR materials [15,16]. Unlike 

conventional MR gel, MRP is a solid-like gel that functions like a plasticine. It canbe 

made into different forms and the shapes can be held for a long time. At an early stage, 

MRP, which normally consists of non-magnetic responsive iron particles (3-5 μm) 

dispersed into a low-crosslinking polymer matrix has become a promising candidate 
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to substitute the traditional MR materials [17]. Due to their high saturation 

magnetization of metallic elements, high permeability, and relatively low 

magnetization, carbonyl iron particles (CIPs) are the most extensively utilized 

magnetic material. 

 
Due to the tunable electrical properties of MR material, the study of electrical 

properties on MR material has drawn a variety of scholars up to this point. The material 

can nevertheless conduct electricity because CIPs are insulating ferromagnetic 

particles dispersed in a conductive matrix [16,17]. Therefore, in on-state condition, 

MR material can transform from an electric insulator to an electric conductor[18-20]. 

In the absence of a magnetic field, magnetic particles are dispersed at random 

throughout the medium or matrix and no conductive channels are formed, resulting in 

the material acting as an insulator [21]. Magnetic particles form a chain parallel tothe 

applied magnetic field in on-state condition. The stronger the applied magnetic field 

is, the longer and tighter the chain is formed. The material becomes an electrical 

conductor because of these complete chains, which create conductive paths for 

electron transfer [22-24]. 

 

 

1.2 Motivation of Research 

 

 
MRPs can be classified into several categories by matrix types. As indicated 

by Xuan et al. [25], MRPs is one of the plastic MR materials that can be categorized 

into three main groups, which are a hydrogel [26,27], swollen polymer gels [28,29] 

and pure polymer gels [30-32]. Amongst these groups of MRPs, the fabrication of 

hydrogel based MRPs are the least demanding and conservative to be rehearsed. 

Magnetic particles are embedded inside a polymer matrix network that has been 

swelled by a liquid solution such as water or a water-miscible organic solvent [33]. 

Hydrogel MRP can also be categorized under solid-like MR gel. Furthermore, these 

MRPs have a better stability and higher MR performance [15,16,34]. MRP is normally 

consists of micron size of iron particles (usually 3-5 micron) dispersed in a non- 

magnetic solid, liquid or gel-like matrix. CIPs are the most commonly utilized 

magnetic material in MR materials due to their high saturation magnetization of 
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metallic elements, as well as their high permeability and low residual magnetization 

[34]. 

 

It is known that poor electrical conductivity, high resistivity and low sensitivity 

of conventional electronic sensors have limited their use in the diverse applications. 

Thus, many attempts have been made to find viable candidates to overcome these 

limitations by utilizing different types of matrix; polyurethane (PU), polyacrylamide 

and polystyrene, and the introduction of additives in the material; carbon nanotubes 

(CNTs) [35], carbon nanofibers (CFs) [36] and graphite (Gr) [37] to further improve 

mechanical, chemical and electrical properties of MR materials. As such, until to date, 

PU has been used widely due to its better sedimentation stability [38]. However, PU 

has some drawbacks such as poor compatibility with hydrocarbon matrix resulting in 

low electrical conductivity [39]. Recently, polyvinyl alcohol (PVA) has been 

introduced to overcome PU issues to accomplish better mechanical performance, 

biocompatible and good electrical conductivity, making it very useful for the 

development of sensor application systems [30]. As a result, PVA has been used as a 

conductive matrix, which is believed to improve electrical conductivity [40]. In 

another study, PVA was used as a matrix with the addition of Gr oxide additive to 

examine electrical conductivity. However, their research was focused the rheological 

properties only. In another study, Hapipi et al. [41] utilized PVA as a matrix together 

with CIP as a magnetic particle to investigate on the rheological properties. 

 

On the other hand, the use of Gr in MR materials particularly MRE has been 

proven to enhance the electrical properties. Besides, Gr is the only non-metal material 

that can conduct electricity despite its low density. Bica [42] revealed that MRE was 

capable to become electroconductive with the addition of 14% Gr micro particles. The 

finding was supported by Huang et al. [43], who discovered that the Gr could change 

the function of MRE to either insulator (<14%) or electrical conductor (>14%). The 

problem comes when the solid-state MRE is too rigid to be utilized into specific 

devices such as soft sensor. When the material is rigid, it is difficult to be shaped and 

despite has low conductivity. Therefore, in MRP, Pang et al. [44] studied the 

rheological and conductivity properties of PU based MRP with the addition of flake Gr. 

The results showed that the electrical conductivity of MRP was increased by 10000 

times relative to pure MRP when 15 wt.% Gr flakes were added to it. 
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1.3 Problem Statement 

 

 
In general, MRE has attracted researchers interested in studying the 

conductivity properties of MR materials for a wide range of applications that require 

high electrical conductivity, especially in sensors. The solid-state MRE, on the other 

hand, is too rigid to be moulded or fitted into certain devices. When the materials are 

rigid, the magnetic particles inside the low crosslinked matrix are mobile and not 

permanently trapped making the particles are difficult to form and have poor electrical 

conductivity. As a result, it is not suitable for some applications. A semi-solid form of 

MR material, such as MRP, is the best candidate for research since it is soft and 

flexible, has high conductivity, and good magnetic properties, and can generate 

electricity. Previous researchers utilized PU as a matrix in MRP to maintain the 

flexibility of material. However, PU based MRP has low conductivity since PU is an 

insulator and has some drawbacks such as poor compatibility with hydrocarbon matrix 

resulting in low electrical conductivity. Therefore, a comprehensive investigation has 

to be undertaken to gain a fundamental understanding of the effect of Gr concentration 

towards the magnetization, morphological, and electrical conductivity properties by 

using PVA as a conductive matrix in MRP. 

 

 
1.4 Research Objectives 

 

 
The main objective of this research is to investigate the electrical performance 

of PVA based Gr-MRP. The primary objectives for this research are: 

 

(a) To characterize the PVA based MRP and Gr-MRP in terms of morphological 

and magnetic properties. 

 

(b) To analyse the resistivity and electrical conductivity of Gr-MRP at different 

magnetic field strengths. 

 

(c) To evaluate the effect of Gr on the rheological properties of MRP and Gr-MRP 

at different magnetic field strengths. 



5  

1.5 Research Scopes 

 

 
The scope of this thesis is specified on the experimental investigation of 

graphite as an additive in MRP fabrication as well as fundamental characterization to 

indicate their potential ability in a real application. The scopes are listed. 

 

 
(a) Gr-MRP is fabricated using various weight percentage of graphite additive (0, 

2, 4, 6, 8 and 10 wt.%). 

 

(b) The physicochemical characteristics including magnetic properties, size of Gr 

and distribution of CIPs and Gr in MRP are carried out through ESEM and 

VSM at off-state and on-state conditions. 

 

(c) The arrangement of CIPs and Gr in plastomer matrix under influence of 

magnetic fields is examined via ESEM by pre-treated the sample with 0.1T 

magnetic fields for 5 minutes. 

 

(d) Resistance and electrical conductivity value of MRP is measured through 

proper set up with absence and presence of magnetic fields (0 to 400 mT). 

 

(e) The rheological properties of the MRP under oscillatory mode are investigated 

using rheometer. The effect of frequency sweep on MRP and Gr-MRP is 

presented in terms of storage modulus. 
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1.6 Significance of Research 

 

 
The significance of this research is summarized in the following points: 

 

 
(a) This research can provide phenomenology study on the physicochemical, 

electrical conductivity, resistivity and rheological properties of Gr-MRP. 

 

(b) The resistivity and electrical properties performance of MRP can be improved 

by the introduction of additives in MRP. This is due to the features owned by 

Gr, led in developing a great interaction between the conductive matrix and 

CIPs thus results in creation of strong polarized chain structure within the 

matrix with the influence of magnetic fields. Therefore, the utilization of Gr in 

MRP with high conductivity range can be potentially used in sensing 

application. 
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1.7 Thesis Outline 

 

 
This thesis consists of five chapters. The related information, achievements, 

and findings are highlighted in each chapter. The outline of the chapters is established 

as: 

 

 
Chapter 1 is the introduction of the thesis. A brief introduction of the 

research is undertaken including the research background, 

problem statement, research objectives, research scope and 

significance of the research. 

 

Chapter 2 comprises a brief literature review on the MR materials, MRP and 

materials characterization that related to previous information and 

understanding of MRP. 

 

Chapter 3 explains the methodology and experimental flow of the research. 

The experimental methodology is divided by two stages; the 

fabrication of MRP samples that incorporates with various 

concentrations of Gr. The Gr-MRP is characterized in terms of 

magnetic properties, morphological properties, elemental 

composition and electrical properties. 

 

Chapter 4 presents the results and discussion on the materials 

characterizations and electrical properties of Gr-MRP samples. 

All the data are demonstrated in forms of image, table and plotted 

graph. 

 

Chapter 5 summarizes the highlight of this thesis that corresponds to the 

objectives. Finally, some recommendations for future works are 

presented as an extension of the existing research. 
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