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ABSTRACT 

Magnetorheological grease (MRG) is classified as a smart material because its 

properties can be changed by applying a magnetic field. MRG is made up of magnetic 

carbonyl iron particles (CIPs) dispersed in a grease medium. The utilization of grease 

with high viscosity as a medium in MRG has benefit in preventing the settlement of 

CIPs from occurring. However, it limits the increment of yield stress in the on-state 

condition, thus reducing application performance during operation. Therefore, the 

introduction of graphite as an additive was investigated in this study to improve the 

rheological properties of MRG including apparent viscosity, shear stress and 

viscoelastic properties. Apart from that, the performance of MRG in term of yield 

stress was determined as well as the increment of yield stress from off-state and on-

state condition were also evaluated to see the effect of different graphite contents on 

the properties of MRG. MRGs with graphite weight percentages ranging from 5, 10, 

and 15 wt.% were developed through conventional mixing method, namely MRG5, 

MRG10, and MRG15. The properties of all fabricated samples were then compared to 

those of a reference MRG sample. The microstructure of MRG and MRG15 was 

characterized using an environmental scanning electron microscope (ESEM). The 

rheological properties of all samples, including apparent viscosity and shear stress 

were examined using a shear rheometer in the rotational mode with shear rate ranging 

from 0.01 to 100s-1. While the viscoelastic properties in term of storage and loss 

modulus of all samples were carried out through shear rheometer under oscillatory 

mode with varied strains range from 0.001 to 10% at fixed frequency of 1Hz for strain  

sweep and frequency range from 0.1 to 80 Hz at fixed 0.01% strain for frequency 

sweep. The results demonstrated a uniform distribution of CIPs in MRG and CIPs with                  

graphite in MRG15 under ESEM analysis at the off-state condition. Based on 

rheological testing, addition of graphite displayed a slight increment in the apparent 

viscosity of MRG5, MRG10, and MRG15, and a significant improvement in the yield 

stress. The highest yield stress achieved in this study is 61.778 kPa with increment of 

yield stress of 52.645 kPa from 0A to 3A. An expansion of the linear viscoelastic 

region from 0.01% to 0.1% was also observed for the MRG10 and MRG15 samples, 

credited to the domination of the elastic properties on the sample. Furthermore, all 

samples displayed a strong solid-like (elastic) behavior due to high value of storage 

modulus, G’ acquired compared to loss modulus, G’’ at all frequency  ranges. These 

obtained results were confirmed based on ESEM under on-state condition, which 

described the contribution of graphite to constructing a more stable chain structure in 

the MRG. In conclusion, the findings highlight the influence of the addition of graphite 

on improving the rheological properties of MRG. Hence, the addition of graphite in 

MRG is a great potential to be applied in many applications such as in brake, damper 

and clutch. 
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ABSTRAK 

Gris Reologi Magnet (MRG) dikelaskan di bawah bahan pintar kerana sifatnya 

boleh diubah melalui penggunaan medan magnet. MRG terdiri daripada partikel besi 

karbonil magnetik (CIPs) yang tersebar di dalam media gris. Penggunaan gris yang 

mempunyai kelikatakan yang tinggi sebagai media di dalam MRG memberi kelebihan 

dalam menghalang pemendapan CIPs daripada berlaku. Walaubagaimanapun, ia telah 

mengehadkan kenaikkan hasil tekanan pada keadaan pengaruh magnet, seterusnya 

mengurangkan prestasi      operasi aplikasi. Oleh sebab itu, pengenalan grafit sebagai adiktif 

telah disiasat di dalam kajian ini untuk menaikkan sifat reologi MRG termasuk kelikatan ketara, 

tekanan rincih dan sifat kelikatan elastik. Selain itu, prestasi MRG dalam bentuk hasil tekanan 

ditentukan termasuk peningkatan hasil tekanan dikira melalui perbezaan dalam kedaan tanpa 

pengaruh medan magnet dengan pengaruh medan magnet untuk melihat kesan kepelbagaian 

kandungan grafit terhadap sifat MRG. MRG dengan peratus berat grafit dipelbagaikan 

dari 5, 10, dan 15 wt.% telah dihasilkan dan diberi nama sebagai MRG5,  MRG10 dan 

MRG15. Kemudian, kesemua sampel dibandingkan sifatnya dengan sampel rujukan, 

MRG. Mikrostruktur sampel MRG dan MRG15 telah dicirikan diuji dengan 

pengunaan Mikroskrop Pengimbasan Elektron (ESEM). Sifat reologi untuk kesemua 

sampel termasuk kelikatan dan tekanan rincih diperiksa menggunakan rheometer 

dalam mod putaran dengan kadar rincih dipelbagai dari 0.01 hingga 100s-1. Disamping 

itu, sifat kelikatan elastik dijalankan dengan penggunaan rheometer rincih dalam mod 

ayunana dengan keterikan pelbagai dari 0.001 hingga 10% dengan frekuensi tetap, 1Hz 

dan frekuensi pelbagai dari 0.1 hingga 80 Hz dengan strain tetap 0.01%. Keputusan 

menunjukkan taburan seragam CIPs dalam MRG dan CIPs dengan grafit dalam 

MRG15 melalui analisis ESEM tanpa pengaruh magnet. Berdasarkan ujikaji reologi, 

penambahan grafit menunjukkan penambahan sedikit kepada kelikatan dalam sampel 

MRG5, MRG10, dan MRG15 dan peningkatan yang ketara dalam tekanan yang 

dihasilkan. Tekanan hasil yang tertinggi diperoleh dari kajian ini ialah sebanyak 

61.778 kPa dengan perkembangan stress hasil sebanyak 52.645 kPa dari 0A hingga 

3A. Rantau pengembangan linear likat kenyal (LVE) dari 0.01% kepada 0.1% turut 

diperhati disebabkan oleh dominasi sifat elastik sampel tersebut. Selain itu, kesemua 

sampel menunjukkan kekuatann sifat seperti pepejal (elastik) disebabkan oleh nilai 

modulus penyimpanan yang tinggi berbanding nilai modulus kehilangan dalam semua 

lingkungan frekuensi. Keputusan yang diperoleh ini telah dipastikan dengan ESEM 

dalam keadaan pengaruh medan magnet yang menunjukkan grafit memberi sumbangan 

dalam penghasilan struktur rantai yang lebih stabil dalam MRG. Secara konklusinya, 

kajian ini menunjukkan pengaruh penambahan grafit dalam memperbaiki sifat reologi 

MRG. Oleh itu, penambahan grafit dalam MRG menunjukkan kebolehan untuk 

diaplikasikan dalam pelbagai aplikasi seperti brek, peredam dan klac. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research background 

Up to this date, the study regarding smart materials has been extensively 

carried out by numerous researchers due to their wide application in engineering and 

daily life. Smart materials can be defined as a material that can changes its properties 

correspond to external stimuli such as heat, light, temperature, stress, electrical field, 

and magnetic fields. Examples of smart materials are shape memory alloy, 

piezoelectric, photochromic, thermoactive, electrorheological, and 

magnetorheological (MR) materials. In these few decades, the study regarding MR 

materials has attracted interest by researchers due to their unique properties in which 

its rheological properties can be controlled through the application of magnetic fields 

[1]. Generally, MR material was made up of ferromagnetic particles, usually carbonyl 

iron particles, CIPs dispersed in various types of carrier medium or matrix. Based on 

the utilization of different carrier mediums or matrix, MR materials can be categorized 

under several groups which are Magnetorheological fluid (MRF), Magnetorheological 

elastomers (MRE), Magnetorheological grease (MRG), and Magnetorheological 

plastomers (MRP). 

            Among all, MRF is the most popular type of MR material due to its excellent 

performance which gives fast responses time as well as higher MR effect. MRF was 

first introduced by Rabinow in 1948 that consists of CIPs dispersed in non-magnetic 

carrier fluid [2]. Carrier fluid such as silicone oil, mineral oil, or other synthetic oil 

with low viscosity was commonly utilized in MRF [3]. The utilization of low viscosity 

carrier fluid in MRF has offered benefits as it allowed a free movement of CIPs to ease 

the formation of a columnar chain structured under influence of magnetic fields. These 

led to fast changes of its rheological properties as magnetic fields being applied and 

the changes are reversible when the magnetic fields are removed. The outstanding 

properties owned by MRF have made it widely applied in engineering applications 
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such as brake, clutches, shock absorber, and engine mounts [4]. Nevertheless, MRF 

will undergo sedimentation after some time due to the density mismatch between CIPs 

with a low viscosity carrier fluid and thus lowered the stability and performance in 

MRF [5,6]. Aside from that, the usage of MRF in an application demanded additional 

seals to prevent leakage of the devices which increases the cost of the production in 

MRF-based devices [6,7]. The listed above drawbacks have led to the invention of 

other types of MR material named MRE that diffused CIPs in the solid rubber matrix. 

This invention was able to solve the sedimentation issues in MRF as CIPs are being 

locked within the matrix [8]. Nonetheless, as CIPs are fixed within the matrix, it is not 

free to move, instead it just vibrates, thus, it can only experience small changes of its 

properties with influence of magnetic fields. As consequences, low MR effect was 

obtained in MRE [8,9].  

                  Alternatively, another type of MR material known as MRG has been 

introduced. MRG was early discovered by Rankin et al. in 1999  which utilizing high 

viscosity liquid, grease to suspend the CIPs [10]. The sedimentation problem that 

occurred in MRF can be encountered in MRG as the employment of non-Newtonian 

liquid grease in MRG can suspend the CIPs against gravity thus prevent it from being 

settled down [11]. This indirectly, result in excellent dispersion stability in MRG. On 

top of that, compared with MRE, CIPs in MRG have a certain freedom of movement, 

which can overcome the lower MR effect in MRE [10,12]. As consequence, a higher 

MR effect of 952.38% was recorded on MRG compared to 71.7% of solid-like state 

MRE [13,14]. Apart from that, by comparing with MRF, the MRG does not require 

additional sealing to prevent leakage of the devices as MRG owns self-sealing property 

due to their thick viscosity. This property can maintain the stability of the equipment 

for long-term usage, thus reduce the manufacturing cost [6]. 

                The merits mentioned above have directed MRG to become a potential 

candidate to be applied in engineering applications such as seismic dampers, brakes, 

and clutches [4]. However, the utilization of grease as a medium for MR material has 

made the MRG experience high off-state viscosity and apparently, limits the expansion 

of yield stress in the on-state condition. This phenomenon in return has led the MRG 

to exhibit poor performance such as torque output [15].  
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1.2 Motivation of the Study 

Despite of owing several advantages, MRG also own some limitation. Due to 

the utilization of grease with high viscosity, MRG experienced high off-state yield 

stress compared to MRF [15]. Conversely, in on-state conditions, it is seen that MRF 

gives a high value of yield stress compared to MRG. The reason of this because the 

movement of CIPs was hindered by high viscosity medium in MRG which in return 

led difficulty for the CIPs to align and form columnar chain structure with the influence 

of applied magnetic fields. Consequently, this resulted in reducing the increment of 

yield stress in on-state condition of MRG.  

 

A development of MRG with high achievable yield stress and broad range from 

off to on-state are required to provide wide control in absorbing vibration [16,17]. 

Study done by Mohamad et al. [13] has proved that the yield stress of MRG can be 

improved by increasing the CIPs’ weight percentage by up to 70wt% with range of 

increment of about 27.6kPa from off to on-state (0 to 3A). On other hand, an 

improvement of the rheological properties of the MRG can be undertaken by the 

addition of additives. Kim et al. [18] investigated the influence of kerosene oil as an 

additive on the rheological properties of MRG. They discovered that the apparent 

viscosity of MRG was reduced by the addition of 5 wt% of kerosene, which indicated 

a better dispersion of CIPs in the grease medium. However, at the same time, the 

dynamic yield stress and viscoelastic properties of MRG were also decreased.  

 

Their findings were consistent with the study conducted by Mohamad et al. 

[19] that utilized and compared three different types of dilution oils namely kerosene 

oil, castor oil, and hydraulic oil in MRG. Even though they discovered the usage of 

these types of dilution oils was able to reduce the off-state viscosity of the MRG, 

however, the dynamic yield stress of the MRG was also reduced. In other words, the 

addition of dilution oils in MRG could lower their apparent viscosity, however, it 

would make the CIPs less attached to the grease medium and expected to experience 

a slipping effect under the influence of shear stress that caused a drop on the resultant 

yield stress. Consequently, it would reduce its performance especially under the 

influence of low magnetic fields strength. Recently, Wang et al. [20], have optimized 

the method to fabricate MRG through an ANOVA analysis by many parameters such 
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as CIPs fraction and size, and silicone oil viscosity. They found that the optimum yield 

stress could be obtained by manipulating the CIPs fraction and silicone oil viscosity, 

but the influence of CIPs size was negligible. However, it was noted that as the utilized 

silicone oil viscosity was higher, the yield stress of MRG was seen to drop at a higher 

magnetic field strength. The reasons were possibly due to the utilization of high 

viscosity of silicone oil, up to 1000 m2s-1 in MRG has contributed to the rise of MRG’s 

apparent viscosity, which finally restricted the alignment of CIPs in the medium under 

influence of magnetic fields. 

 

          Apart from utilizing different types of dilution oil as an additive in MRG, several 

studies incorporated solid-type additives in order to enhance the rheological properties 

of MRG. For example, Park et al. [21] revealed that by adding nanoparticle’s additive, 

CrO2 in MRG has helped to improve the stability of MRG that resulted from the steric 

repulsion effect between CIPs and CrO2. Though, the dynamic yield stress of MRG 

showed insignificant improvement. Nevertheless, Mohamad et al. [22] introduced 

another type of nanoparticle’s additive in MRG namely, super-paramagnetic, γ-Fe2O3. 

The addition of 1 wt. % of additive capable to lower the off-state viscosity and at the 

same time, increased the viscosity at on-state viscosity of MRG. The result reflected 

the effect of nano-sized particles that filled in the voids between the CIPs under the 

influence of magnetic fields and thus, contributed towards the formation of stronger 

chain-like structures inside the medium.  Later, Tarmizi et al. [23] utilized a micron-

sized additive of cobalt ferrite, CoFe2O4 that has further lowered the off-state viscosity 

of the MRG by up to 86% with 1 wt%. Their result reported the highest yield stress 

obtained, about 12 kPa with the incorporation of 5 wt.% CoFe2O4 at 0.64 T of the 

applied magnetic field. However, it was noted that the range of expansion of yield 

stress in MRG with the incorporation of 5 wt% CoFe2O4 was considered low, which 

was from 0.8 to 12 kPa by increasing magnetic field from 0 to 0.64 T. Apparently, this 

yield stress range limit the material to be applied in a wide range of applications.  

 

Aside from adding magnetic particles to improve the rheological properties of 

MR material, alternatively, incorporation of non-magnetic, carbon-based additives 

such as graphite could also enhance the rheological performance of MR materials [24–

27]. Graphite possesses excellent properties such as good thermal and electrical 

conductivities, mechanical properties, chemically inert, and low density, which are 
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capable to maintain the existing mechanical properties of the material. Moreover, 

graphite can be classified as an economical additive attributable to the high availability 

and low-cost production [28]. An experimental study conducted by Tian et al. [24] 

presented that the initial mechanical properties of MRE have been improved by the 

addition of 20 wt% graphite. Then, a noticeable improvement of MR effect up to 60% 

towards field-dependent modulus of MRE has been confirmed by Shabdin et al. [25] 

with corresponding to the 33 wt% graphite. In their study, the MR effect was improved 

by 176% as compared to the previous study in [24].  

 

Other MR materials such as MRP and MRF have also benefiting from the 

utilization of graphite as an additive. With addition of 15 wt% graphite in MRP has 

increased the saturated storage modulus by 0.8 MPa compared to pure MRP, and the 

viscosity was remarkably improved due to strengthen effect exhibited by graphite [26]. 

In another study performed on MRF by Thakur [27], a high on-state viscosity and shear 

stress values could be obtained with increasing the weight percentage of graphite 

flakes by up to 3%. The authors stated that this was caused by the contribution of 

graphite that involved in improving the formation of columnar chain structure by filled 

the empty gap between CIPs to form more strong structures, and as a result, the yield 

stress was elevated.  

 

Therefore, it can be concluded that the incorporation of graphite is proven to 

improve the rheological properties of MR materials, and it is expected that rheological 

properties of MRG will be improved too. Although the off-state viscosity of MRG is 

presumed to slightly increases with the addition of graphite powder, the field-

dependent yield stress of MRG can be enhanced due to the strengthen effect exhibited 

by the graphite.  
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1.3 Problem Statement 

Due to the tunable properties of MRG, it is potentially to be applied as a 

vibration damper. However, a development of MRG with high yield stress is required 

to provide a large variation in damping force in order to protect the body of the system. 

Aside from that, the range of yield stress’s increment from off to on-state also an 

important matter to be considered for technical utilization. Based on the previous 

study, the achievable yield stress of MRG and the range of yield stress from off to on 

state is still considered low. Meanwhile, additives were proven to enhance the 

properties of MRG, yet research related to additives that can improve the yield stress 

of MRG has not been carried out yet. Graphite on other hand are potential additives to 

be utilized in MRG as it is proven in improve the interaction between magnetic 

particles with influence of magnetic fields. Therefore, in this study graphite are 

introduced as an additive in MRG and their rheological properties was investigated to 

indicates the influence of graphite on the arrangement of magnetic particles in MRG 

that subsequently led to enhancement of the yield stress of MRG.  

 

1.4 Research Objectives 

The main objective of this research is to enhance and increase the range of yield stress 

from off to on state condition by introduce graphite additives in MRG. The specific 

objectives of this study are listed as below: 

a) To confirm the uniform distributions of particles in MRG via morphological 

analysis. 

b) To analyse the rheological properties of MRG under rotational and oscillatory 

mode at various magnetic field. 

c) To evaluate the effect of graphite composition on the yield stress of MRG. 
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1.5 Research Scope 

The scope of this study is focussed on experiment evaluation and characterization of 

MRG with graphite additives to indicate their potential ability in real application. The 

scopes are listed below: 

a) Preparation of four (4) types of MRG with different weight percentages (wt.%) 

of graphite (0, 5, 10 and 15 wt%) via conventional mixing method by using 

mechanical stirrer for 2 hours. 

b) The morphologies of MRG samples were examined via Environmental 

Scanning Electron Microscope (ESEM) under absence and presence of 

magnetic fields by pre-treated the sample with 0.1T magnetic fields for 5 

minutes at room temperature. 

c) The rheological properties of MRG samples are analysed in off-state and on-

state through oscillatory and rotational mode of testing. The measure parameter 

are strain sweep and frequency sweep in terms of storage and loss modulus and 

viscosity in term of shear rate and shear stress. The performance of MRG in 

term of yield stress are determine from the extrapolation of graph at zero shear 

rate.  

 

1.6 Significance of Research 

Present study has introduced graphite additives in MRG and how different 

graphite content can enhance the rheological properties of MRG. Different from 

previous additives that has been utilized in MRG, graphite able to improve the yield 

stress as well as increase the yield stress range from off to on-state condition. This is 

due to the features owned by graphite led in developing a great interaction between the 

grease medium and CIPs thus results in creation of strong polarized chain structure 

within the medium with influence of magnetic fields. Therefore, the utilization of 

graphite in MRG with high yield stress and larger yield stress range can be potentially 

used in application of vibration damper.  



 

8 

1.7 Thesis outline 

             This thesis is structured into five chapters. The first chapter provides a brief 

introduction of the material studied, motivation of the study related to the previous 

related research, problem statement, objectives that wants to be achieved in this 

research scope and significance of the research. In this chapter, a summary of each 

chapter also being explained.  

              Chapter Two present the literature review related to the MR, additives that 

has being utilized in MRG, utilization of graphite in MR material as well as 

explanation on rheological properties of MR material and several examples of 

application that are potentially applied using MRG. 

             Chapter Three describes the planning of the experiment including material 

selection, fabrication of MRG samples through conventional mixing method, brief on 

the morphological testing on the samples and particles via Environmental Scanning 

Electron Microscope (ESEM) as well as rheological testing on all the samples under 

rotational and oscillatory mode in various magnetic fields strength. 

              Chapter Four displayed the result obtained from morphological and 

rheological testing in absence and presence of magnetic fields. The obtained result 

was interpreted in a graph, table, figure and was carefully discussed to provide an 

understanding of behaviour of graphite on the rheological properties of MRG.  

                Chapter Five conclude the result acquired from the research as well as stated 

the contribution and providing recommendation for potential future works. 
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