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ABSTRACT 

Vehicle interior noise level has now become one of the indicators of driving 

comfort. However, the generation of noise is a complex phenomenon where it involves 

various sound sources with different ways of radiation. This research focuses on the 

generation of wind noise from the A-pillar and side-view mirror of a generic vehicle 

model known as DrivAer, based on the physical flow behaviour. The main objective 

of this study is to find the physical flow that causes the generation of A-pillar wind 

noise and to propose the relation between the A-pillar angles and length of side-view 

mirror with wind noise generation. This study is conducted numerically at a Reynolds 

number of 𝑅𝑒 = 12.17 × 106, with respect to the length of DrivAer model. The noise 

source is obtained from the incompressible Unsteady Reynolds Averaged Navier-

Stokes (URANS); and the noise radiation is predicted using an acoustic analogy based 

on Curle’s equations. Reliability and validity of the calculations are tested by 

comparing the basic model with data of experimental studies from previous 

researchers, whereby the result indicates an almost similar outcome. A total of eight 

main cases have been studied. These cases include  A-pillar cases of varying angles 

which are 61°, 58° (baseline case), 50° and 42°; and four side view mirror cases of 

varying gaps which are 180mm,190mm, 230mm and 240mm. Results have shown that 

increasing the A-pillar angle makes the sound pressure level louder. 84.33 dB is 

generated when the A-pillar angle is at 61° and 76.41 dB is generated when the A-

pillar angle is at 42°. The formation of the A-pillar conical vortex formed along the A-

pillar has been found responsible for the generation of the wind noise. In the case of 

different side-view mirror position, in which the A-pillar angle remains constant, 

results for all cases are almost the same according to the A-pillar sound pressure level 

and sound source level results, in which the noise generated is about 82 dB for all cases 

of side-view mirror.   
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ABSTRAK 

Tahap kebisingan dalaman sesebuah kenderaan kini menjadi salah satu 

petunjuk terhadap keselesaan pemanduan. Walau bagaimanapun, penghasilan 

kebisingan merupakan fenomena yang kompleks di mana penghasilannya melibatkan 

pelbagai sumber bunyi dengan cara radiasi yang berbeza. Penyelidikan ini 

menumpukan kepada penjanaan kebisingan daripada A-pillar dan cermin sisi 

kenderaan generik yang dikenali sebagai DrivAer, berdasarkan kelakuan fizikal aliran 

angin yang melepasinya. Objektif utama penyelidikan ini adalah untuk mengenal pasti 

aliran fizikal yang bertanggungjawab kepada penjanaan kebisingan daripada A-pillar 

dan cermin sisi kenderaan, dan juga untuk menghubung kaitkan antara sudut A-pillar 

dan kepanjangan cermin sisi dalam penghasilan kebisingan angin. Kajian ini telah 

dijalankan secara numeral pada nombor Reynolds 𝑅𝑒 = 12.17 × 106 , berdasarkan 

kepada panjang model DrivAer dengan menggunakan persamaan Unsteady Reynolds 

Averaged Navier-Stokes (URANS) dan pengiraan kebisingan telah dilakukan dengan 

menggunakan teori Curle. Data kajian daripada model dasar telah dibandingkan 

dengan data kajian eksperimen yang telah dijalankan oleh penyelidik terdahulu untuk 

tujuan pengesahan dan kebolehpercayaan pengiraan. Data kajian telah menunjukkan 

hasil yang hampir sama seperti eksperimen yang telah dijalankan penyelidik terdahulu. 

Terdapat lapan jumlah keseluruhan kes yang dijalankan dalam kajian ini. Kes-kes 

tersebut adalah kes A-pilar dengan sudut yang berbeza iaitu 61°, 58° (model dasar), 

50° and 42° dan juga empat kes yang melibatkan cermin sisi yang berlainan panjang 

iaitu 180mm,190mm, 230mm and 240mm. Hasil kajian mendapati bahawa semakin 

landai sudut A-pillar, semakin tinggi tahap kebisingan yang dihasilkan. 84.33dB tahap 

kebisingan telah dihasilkan oleh sudut A-pillar 61° dan 76.41dB dihasilkan daripada 

sudut A-pillar 42°. Kajian juga mendapati bahawa pembentukan konikal vorteks A-

pillar sepanjang A-pillar memainkan peranan dalam penghasilan kebisingan angin. 

Bagi kes cermin sisi yang berbeza panjang pula, di mana sudut A-pillar ditetapkan 

pada sudut yang sama, hasil kajian mendapati kesemua kes menghasilkan tahap 

kebisingan yang hampir sama, di mana tahap kebisingan yang terhasil adalah dalam 

lingkungan 82 dB. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

According to a fact, a healthy human ear is capable of hearing sounds with 

frequencies in the range of 20 Hz to 20 000 Hz. Nevertheless, the ability to hear sounds 

at higher frequency range declines with age. The frequencies above 20 000 Hz or 20 

kHz is called as ultrasonic sound and it is inaudible to a human being. Meanwhile 

sounds lower than 20 Hz is known as the infrasonic sound, in which it cannot be heard, 

but can be felt only if it is sufficiently strong. Sound may be pleasant or unpleasant, in 

which unpleasant sound will be called as noise [1]. 

Noise that is known to cause annoyance, may lead to hearing impairment and 

may interfere communications. Nowadays, similar to the air and water pollutions, 

noise also has been recognised as a major environmental pollution. Rapid 

industrialisation of motorisation and aviation has clearly resulted in the rapid increases 

of noise pollution and it becomes of significant important. Not missed, Malaysia also 

always looking forward for a better way in reducing the nuisance from all possible 

noise sources. It was reported in The Star, a total of 132 complaints were lodged with 

the Environment Department (DOE) in 2015 about the noise pollution that comes from 

many sources such as construction, use of roads, railways and airports [2].  

Basically, the noise level perceived by humans is depending on the surrounding 

possible noise sources as shown in Figure 1.1. Road traffic is the most common noise 

pollution source because it is the most pervasive, where their noise levels could 

achieved about 90 to 120 dB depends on the heaviness of the traffic. A survey on noise 

environment in Roorkee, India, conducted by Rajeev [3] also has found that 87 percent 

of the community from various ages are affected by the noise emanating from the 

automobiles. 
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Figure 1.1 Noise level based on different situations 

When it comes about the road traffic, passenger cars are seem to be one of the 

road vehicle that contributes significantly to the noise pollution. This is due to the 

number of passenger cars that outnumbers the other road vehicles especially at high 

speeds. One of the noise sources generated by passenger car is the aerodynamic noise. 

Aerodynamic noise is the mechanism of production of noise that arises almost entirely 

from the airflow instabilities. For moving vehicles, this is also known as the wind 

noise. The generation of wind noise is one of the crucial problem. Examples include 

the wind noise emitted from flow passes over pantograph system of high speed train 

when its speed exceeds 320km/h and the landing gear system of an aircraft. Also, the 

radiated noise from the aircraft undercarriage is one of the dominant noise source when 

an aircraft is in the final approach for landing [4, 5]. 

Deeply focusing on the passenger car problems, the noise emitted from a 

moving car is a total contribution mainly from three major noise sources. They are 
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from the engine (propulsion noise), tyre (rolling noise) and turbulent flow (wind 

noise). While cruising at high speed, mostly over 80km/h, the wind noise will 

dominates the total contribution of noise while the other two noise sources reduced 

significantly [6]. This is due to the fact that the wind noise increases as the speed of 

car increases. The increase in wind noise is proportional to the order of 𝑣6, while the 

other two noise sources are proportional to the order of 𝑣1  to 𝑣3 . Here, 𝑣  is the 

cruising speed of the cars. Figure 1.2 clearly explains the situation based on the 

relationship between the speed of cars and its sound power level. 

 

Figure 1.2 Relationship between the speed of car and the sound power level for 

each noise sources [7] 

Theoretically, the change in sound power level with respect to the speed of the 

car for all type of noise sources can be estimated as follows [8, 9];  

𝐿𝑤𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛(𝑣, 𝑎)

= 𝐴𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 + 𝐵𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 (
𝑣 − 𝑣𝑟𝑒𝑓

𝑣𝑟𝑒𝑓
) + 𝐶𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛. 𝑎               (1.1) 

𝐿𝑤𝑟𝑜𝑙𝑙𝑖𝑛𝑔(𝑣) = 𝐴𝑟𝑜𝑙𝑙𝑖𝑛𝑔 + 𝐵𝑟𝑜𝑙𝑙𝑖𝑛𝑔. log10 (
𝑣

𝑣𝑟𝑒𝑓
)                       (1.2) 
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𝐿𝑤𝑎𝑒𝑟𝑜(𝑣) = 10 log10

[
 
 
 𝐴𝑎𝑒𝑟𝑜 (

𝑣𝑛

𝑐0
𝑛−3)

1 × 10−12

]
 
 
 
                               (1.3) 

Here 𝐴, 𝐵  and 𝐶  are constant. Those constant values are governed by the 

condition of the road, type of car and geometry. In the Equation (1.1) to Equation (1.3), 

𝑎 is the acceleration of the car, 𝑐0 is the speed of sound and 𝑛 is the type of wind 

sources. The type of wind sources are varied between the ranges of 4 to 8 that indicates 

the power level of sound. According to Lighthill [10] 𝑛 = 4 indicates as monopole 

type of wind sources, 𝑛 = 6 for dipole and 𝑛 = 8 for quadrupole type of wind sources. 

In a long driving trip, continuous exposure to wind noise can cause fatigue and 

discomfort to the vehicle occupants especially the driver. The characteristic of the 

wind noise of a passenger car depends on several factors. They are the shape of the 

car, its cruising speed, wind direction flow towards the car and the natural wind 

condition. Among all of those factors, the shape of the car is the most important and 

seen as the only controllable factor for the wind noise. Since 1921, car manufacturers 

have given a much focus on the design of the car to be more attractive and its 

aerodynamic performance in order to reduce the fuel consumption. However, on late 

1960s, as the car’s speed has progressively increased in line with high aerodynamic 

performance, researchers and engineers become aware that the wind noise is increasing 

with the speed. This is due to the wake generated around the exterior car component 

such as the A-pillar and the side view mirror. When the airflow passed around the A-

pillar and the side view mirror, vortex is generated and the pressure fluctuations from 

the vortex shedding generate wind noise. Hucho [11] stated that when a car moving at 

150 km/h with 5500 rpm engine speed, 78.5 dB from the total noise of 85 dB that are 

measured at the driver’s ear, is generated by the wind noise. Therefore, it is important 

to control the generated wind noise in order to reduce the total noise generated by the 

car. 

Studies of noise generation are particularly important for passenger comfort 

and also for reducing the environmental noise pollution. As passenger comfort 

becomes increasingly important, noise reduction has to be considered in the early 
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design process and need to be investigated numerically in the early design stage to 

avoid a poor design choices [6, 12]. Therefore, it is important to have a better 

understanding on the wind noise generation on a passenger car so that a practical 

method can be applied to reduce the noise being generated. 

Recently, general investigations of the flow field around the A-pillar and side 

view mirror are strongly focused on simplified car models, such as the Ahmed body 

[13] and the SAE model [14]. Both models provide a better understanding on 

identifying and analysing the basic flow structures by reducing the interference effects 

between different areas of vehicles. Previous works based on the simplified models 

have provide many information on numerical and experimental that is suitable for the 

validation purposes for further study. However, the shape of this car is no longer 

relevant to the current car design, where a more aerodynamic shape is more prominent. 

In order to close this gap, the Institute of Aerodynamics and Fluid Mechanics of the 

Technical University Munchen (TUM), in cooperation with Audi AG and BMW 

Group have proposed a realistic generic car model, which is called the DrivAer [15]. 

DrivAer body is a general vehicle model that is purposely designed to have a 

similar exterior design feature to most production cars. The geometry which is made 

available to the public by TUM, has been used in many studies previously as a 

benchmark case. Thus, the DrivAer model will be used in this study as it reflects to a 

realistic production car. Many studies on DrivAer for the exterior aerodynamics have 

been done previously, but the study on the wind noise from the A-pillar and side view 

mirror of DrivAer is still not yet available. DrivAer, a sedan-typed car, is divided into 

three pillar that is known as the A, B and C pillar as shown in Figure 1.3. Therefore, 

current study is only focus on the A-pillar part in which side view mirror part also will 

be included. 
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Figure 1.3 Three pillar configurations of DrivAer Fastback, a sedan-typed car 

model 

1.2 Problem Statement 

Due to the customers demand for a low level of cabin noise while at the same 

time keeping the cost of the car to a minimum, a study on the noise generation is 

needed in order to mitigate its noise source generation. At high speed, wind noise can 

dominates the total interior noise in which has caused discomfort for the passengers 

and the driver especially. Located near to the driver, A-pillar and side view mirror are 

the regions where the highly separated and turbulent flow are observed [14] and the 

relation and effects of the behaviour of flow over A-pillar and side view mirror on a 

realistic car are still not well understand. 

The airflow around the A-pillar and side view mirror is very complex due to 

its turbulent nature and heavily governed by the unsteadiness behaviour of the fluids 

that thus contributes to the generation of wind noise at once [16] . Although, there are 

several studies on the wind noise generated by the flow over the A-pillar and side view 

mirror, there still a question on the reduction of noise level when the angle of A-pillar 

and length of side view mirror are varied on a real production car. 

It is found that only several publications studied the wind noise associated with 

the flow from the A-pillar and side view mirror of a passenger car. Thus, the generation 

of wind noise over A-pillar and side view mirror is still not well understood especially 
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for the realistic production of car such as DrivAer model that would be used in this 

study. Nowadays, passenger comfort has becoming more important and therefore it is 

important to consider the automotive design in the early stage of process to make a 

reduction on noise for the car manufacturers as well as to cut the experimental cost 

and simultaneously improve its productivity and performance [17]. 

1.3 Research Objective 

The objectives of this research are : 

(a) To investigate the physical behaviour of wind generation on different slanted 

angle of the A-pillar and different length of the side view mirror of a realistic 

generic vehicle model called the DrivAer. 

(b) To analyze the most relevant slanted angle of the A-pillar of DrivAer that 

generates the lowest noise level. 

(c) To determine the best length of the side view mirror of DrivAer that produce 

the lowest level of wind noise. 

1.4 Research Scope and Limitations 

The scopes of this research are as follows: 

1. A realistic generic vehicle model, DrivAer is chosen as the problem 

geometry with the focused will be given on the wind noise generation on 

the A-pillar and side view mirror based on the flow characteristics. 

2. The noise sources are primarily due to the pressure fluctuations and 

fluctuating aerodynamic forces which are drag, lift and side force. 
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3. The sound sources are considered as compact when the sound wavelength, 

λ, is larger than the dimension of the body, D (λ ≫ D). 

4. Curle’s equation is used in this study to calculate the noise radiation. In the 

Curle’s equation, the noise generation due to pressure fluctuation on the 

surface of a rigid body is considered. 

5. The research is only focused on the simulation method due to the 

complexity to separate the other noise sources from the wind noise in a real 

on road experiment. 

This research is limited on noise generated from the A-pillar and side view mirror of 

symmetry body of the DrivAer model instead of a whole DrivAer body or other parts 

of car component such as the engine, radiator or tyres. The angle of A-pillar needs to 

follow the standard of its maximum and minimum of real production cars based on the 

standard for safety regulation as stated in Table 1.1 below. This is because the A-pillar 

angle and its width affect the structure of the rooftop of the production cars. Moreover, 

if the angle of the A-pillar is too small, the sunlight penetration would be directly to 

the driver and also to the front passenger. 

Table 1.1 Standard European vehicles measurement regulations [18, 19, 20] 

Measurement Description Mean Min Max 

A-pillar inclination from vertical (°) 57 40 61 

Position of side view mirror (mm) Must not projected more than 250 mm 

beyond the overall width of the vehicle 

measured without mirror. 
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1.5 Significance of Research 

Noise is not just unpleasant. It can be a major expense and productivity lost. 

With the increased speed of the vehicles, noise has become one of the environmental 

problems that need to be focused on. If this situation can be handled in a certain part, 

it would give a great impact on the driver and passenger while driving. 

The study on wind noise radiated from the A-pillar and side view mirror of a 

realistic car can discover how much the level of noise propagated towards the driver. 

Reduction on noise level from A-pillar and side view mirror is expected to develop a 

comfort environment to the driver and passenger especially while driving at high speed 

and during a long journey. The study of wind noise generation based on the behaviour 

of flow that passing over the A-pillar and side view mirror may give the ideas to the 

designers and engineers to predict in advance their designed car at the early design 

stage. 

Next, to signify the purpose of this study, studies about noise are not only 

understanding its propagation mechanism, but also to investigate the most effective 

method on controlling and reducing the noise. Based on the previous study, there are 

only several studies [14, 21–24] that systematically investigate the effects of changing 

the angle of the A-pillar and manipulating the length of side view mirror in order to 

mitigate its noise sources. However, the study only limited to simplified car model. 

With the current study, a more realistic car model is used, thus manufacturers able to 

focus on the best A-pillar angle and length of side view mirror that generate low level 

of noise. 

The study would be beneficial due to the use of a realistic car model that able 

to explain a detailed flow structure around A-pillar and side view mirror that create 

noise, compared to a simplified car model such as SAE Type 4 model, used in most of 

the past studies. The realistic car model used in this study which is DrivAer, can 

provide a more reliable data or can be as a guideline for manufacturers on wind noise 

generation from the A-pillar and side view mirror. 
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1.6 Thesis Outline 

This thesis is divided into six chapters. Chapter 1 provides basic introduction 

of the research by introducing the background of research, problem statement, the 

objectives of research, research scopes and limitations, and lastly the significance of 

research.  

Chapter 2 discusses the literature review related to this study in detail including 

the review on the past studies which are important as a guideline for current study. 

Research gaps will be identified and highlighted based on the reviews. 

Methodology for current study is explained in Chapter 3. It includes the 

methodology for flow simulation, noise calculation and sound transmission loss. 

Methods involved for flow simulation are the governing equations, turbulence model, 

wall function, problem geometry, computational domain, boundary conditions and 

computing machine. Method for noise calculation is explained starting from the basic 

acoustic analogy, followed by Lighthill’s acoustic analogy, and finally the Curle’s 

theory that is used in current study. Next, explanation for sound transmission loss 

method and finally the research flow is presented in a Gantt chart. 

Chapter 4 describes the computational validation study for flow over DrivAer 

and the noise generated. This chapter is important in order to make sure that the method 

implemented in current study is correct and suitable for further progress by comparing 

the results from the validation case study with the previous available results. This 

includes the validation for flow simulation and noise calculation.  

Chapter 5 presents the main findings of current study in which all the results 

obtained will be analysed and discussed. The results include the case of wind noise 

generated from both, the A-pillar and the side view mirror that are presented in the 

form of tables, graphs and flow visualisations. 

Chapter 6 summarises the current study with conclusions and recommendation 

for future works. 
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