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ABSTRACT 

An increase demand of energy supply has become the main concern since the 

conventional fossil fuels is exhaustive in supplies. Literature shows that proton 

exchange membrane fuel cell (PEMFC) has been receiving attention for various 

stationary and transportation application. Polybenzimidazoles-phosphoric acid 

(PBI/PA) has gaining attention to become a membrane for High Temperature Proton 

Exchange Membrane Fuel Cell (HT-PEMFC) applications. However, there have been 

concerns on the durability and stability of PBI/PA membrane system, which negatively 

affect their widespread used for commercialization. The problems include the PA 

leaching from PEM that lead to proton conductivity decay as well as deterioration of 

PEMFC performance during long-term operation. Therefore, the aim of this research 

is to develop a new PBI/Acid membrane containing highly phosphonated phytic acid 

(PyA) (C6H18O24P6) molecules as a co-dopant acid of PA. The presence of abundance 

hydrophilic hydroxyl groups around the cyclohexane ring of PyA molecule is expected 

to be able to participate in H bonding interactions with the functionalities in PBI/PA 

matrix and hence help to improve its stability and durability. The analyses of this newly 

PBI/Acid membrane system were carried out using Fourier- transform infrared (FTIR), 

X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Based on the 

analysis, the synthesized PBI doped acid membrane followed the required properties 

for HT-PEMFC application, which is stable up to 500 °C, in which significantly higher 

than the operating temperature of HT-PEMFC. To address the issue on proton 

conductivity decay, PBI membranes with different porosity were fabricated as a 

sponge-like porous structure membrane has the ability to the absorb excess acids. 

Porous PBI-1 (pPBI-1) and porous PBI-5 (pPBI-5) membranes which represent 1 wt% 

and 5 wt% additional of porogenic solvent were successfully fabricated. Six different 

acid doping conditions, which varied time and temperature were applied and the acid 

doped membranes were evaluated based on their acid doping level (ADL) behaviour 

with respect to the proton conductivity value. The results showed that porous PBI 

membrane with higher porosity contributed to higher ADL values, which resulted in 

higher proton conductivity value. In addition, the membrane were tested under 

different relative humidity (RH), and the results indicate that the proton conductivity 

increases significantly with RH and temperature. Subsequently, the single cell test of 

HT-PEMFC was conducted and the performance of the selected doping condition of 

porous PBI/Acid doped membranes (from doping Condition 6) was evaluated 

following the requirement of HT-PEMFC operation. The performance of the 

membranes tested for HT-PEMFC showed that porous PBI membrane with lower 

porosity exhibiting better performance than the porous PBI membrane with higher 

porosity. Therefore, it can be concluded that both pPBI-1 and pPBI-5 gave an excellent 

performance in their respective ways and based on the membrane evaluation 

performance, PBI membrane doped with both PA and PyA have the potential to be 

used as a doping solution for HT-PEMFC. 
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ABSTRAK 

Permintaan yang tinggi terhadap sumber tenaga telah merunsingkan pelbagai 

pihak kerana sumber konvensional seperti tenaga fosil dijangka tidak dapat bertahan 

lama. Tinjauan literatur menunjukkan penggunaan Sel Bahan Api Membran 

Penukaran Proton (PEMFC) kini semakin mendapat perhatian kerana kepelbagaian 

aplikasi yang boleh digunakan seperti dalam bidang pengangkutan dan penyimpanan 

tenaga. Membran polibenzimidazol-asid fosforik (PBI/PA) mula mendapat perhatian 

untuk digunakan dalam aplikasi PEMFC yang bersuhu tinggi (HT-PEMFC). 

Walaubagaimanapun membran PBI/PA turut mempunyai kekurangan dari segi 

ketahanan dan kestabilan. Antara masalah yang dialami termasuklah kebocoran asid 

dari PEM dan seterusnya mengakibatkan proton konduktiviti dan prestasi PEMFC 

untuk jangka masa panjang terjejas. Oleh itu, objektif utama kajian ini dibuat adalah 

untuk menghasilkan membran PBI berasaskan PEM yang mengandungi asid fitik yang 

berfosfonasi tinggi bersama-sama asid fosforik sebagai asid bersama. Dengan 

kehadiran kumpulan hidrofilik dan hidroksil di dalam asid fitik dijangka dapat 

memperbanyakkan lagi ikatan hidrogen antara matriks PBI/PA, dan seterusnya dapat 

memperbaiki kestabilan dan ketahanan membran. Analisis-analisis telah dibuat 

menggunakan Fourier Transfrom Inframerah (FTIR), Pembelauan Sinar-X (XRD) dan 

Analisis Termogravimetrik (TGA). Berdasarkan analisis yang dijalankan, asid 

didopkan PBI membran yang disintesis mengikut ciri-ciri yang diperlukan untuk 

aplikasi HT-PEMFC iaitu stabil sehingga suhu 500 °C, di mana suhu ini lebih tinggi 

daripada suhu operasi HT-PEMFC. Untuk mengatasi masalah proton kondutiviti yang 

rendah, membran PBI dengan pelbagai keliangan telah berjaya dihasilkan sebagai 

seperti span yang mempunyai kemampuan untuk menyerap asid berlebihan. 

Membran-membran tersebut dikenali sebagai membran PBI dengan tahap 1% (pPBI-

1) keliangan dan membran PBI dengan tahap 5% keliangan. Enam keadaan pendopan 

asid yang berbeza masa dan suhu telah digunakan dan membran dinilai berdasarkan 

tahap pendopan asid (ADL) dengan mengikut kepada nilai proton konduktiviti bagi 

membran. Hasil kajian menunjukkan semakin tinggi keliangan membran, semakin 

tinggi ADL dan semakin tinggi nilai proton konduktiviti bagi membran. Tambahan 

lagi, membran diuji mengikut kelembapan relative (RH) dan keputusannya 

menunjukkan proton konduktiviti meningkat mengikut RH dan suhu. Kemudian, 

operasi sel tunggal untuk membran yang terpilih iaitu dari keadaan nombor 6 telah 

dijalankan mengikut kehendak operasi HT-PEMFC. Hasil penilaian membran yang 

dijalankan menunjukkan bahawa membran berkeliangan rendah pula yang 

memberikan prestasi yang lebih baik. Kesimpulannya bahawa kedua-dua membran 

pPBI-1 dan pPBI-5 memberikan prestasi yang baik dalam penilaian membran masing-

masing iaitu dalam proton konduktiviti dan operasi sel tunggal berasaskan HT-

PEMFC PBI dengan membran asid dopan fitik asid mempunyai potensi untuk 

digunakan sebagai cecair dopan asid dalam operasi HT-PEMFC. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

The global expansion of industries and technologies has resulted in a slew of 

environmental challenges, including increased air pollution and global warming as 

carbon dioxide emissions continue to climb. Furthermore, rising energy demand from 

developing countries has become a major problem, as traditional fossil fuels will not 

last more than a century and production is frequently hampered by geopolitical 

concerns. Various research and development (R&D) activities on renewable energy 

resources and technology have been spurred by the uncertainty of energy supply and 

environmental pollution challenges. 

The global renewable energy installation has been progressing since 2007 till 

2017, according to the World Total Energy Supply in 2019. The trend is projected to 

continue in the future, as demand for low- and zero-emission energy sources grows, 

particularly in developed and emerging countries. In this context, green hydrogen 

energy, or hydrogen fuel cells, is currently in demand since it is more ecologically 

benign and less expensive than other renewable energy sources. 

A fuel cell is an electrochemical device that uses electrochemical oxidation of 

fuel at the anode and reduction of oxidant at the cathode to convert chemical energy 

from fuel into electrical energy (Li, 2014). Fuel cells have various advantages over 

conventional energy conversion systems such as internal combustion engines and 

batteries. These benefits include a wide range of fuel options (e.g., hydrogen, methane, 

and methanol), the capacity to create continuous power as long as the reactants are 

replenished, high energy conversion efficiency (up to 80%), and environmental 

friendliness (water is the sole chemical by-product) (Chen et al, 2009). Above all, 

researchers believe that fuel cells have the potential to reduce our reliance on fossil 
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fuels, making them a clean and promising alternative to traditional technologies for 

utilising hydrocarbon fuel resources in a variety of applications ranging from portable 

power to transportation and stationary power systems. 

Distinct principles, such as the type of electrolyte used in the cell, operating 

temperatures, charge carrier, and target applications, have been used to build various 

types of fuel cells. Proton Exchange Membrane Fuel Cell (PEMFC), Alkaline Fuel 

Cell (AFC), Phosphoric Acid Fuel Cell (PAFC), Molten Carbonate Fuel Cell (MCFC), 

and Solid Oxide Fuel Cell are the distinct types of fuel cells based on their varied 

electrolyte materials (SOFC). Table 1.1 (Energy Efficiency & Renewable Energy 

(EERE), 2011) displays the various types of fuel cells and their features. 

Due to its comparatively high power density, low operating temperature, and 

quick start-up capability, PEMFC has attracted the most attention among the 

aforementioned types of fuel cells above, especially for automotive and small 

stationary applications (Song et al, 2008). PEMFCs are a promising technology in the 

twenty-first century, providing consumers with a clean and efficient power generating 

source. The first PEMFC unit was designed by General Electric (GE) researcher 

William Thomas Grubb in the late 1950s, and the device was then refined by another 

GE researcher, Leonardo Niedrach, by adding platinum as a catalyst on the membrane 

(Li, 2014). The structure of a PEM fuel cell is depicted in Figure 1.1. It comprises of 

a proton exchange membrane sandwiched between two Pt catalyst-loaded gas 

diffusion electrodes, a gas diffusion layer (GDL), and a bipolar plate with flow 

channels on both the anode and cathode (Zhou, 2015) 
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Table 1.1 Comparison of Fuel Cell Technologies (EERE, 2011). 

Fuel Cell 

Type 
Abbreviation 

Electrolyte 

Materials 

Conductive 

ions 

Operating 

Temperature 
Typical Stack Size 

Electrical 

Efficiency 

(LHV) 

Applications 

Proton 

Exchange 

Membrane 

Fuel Cell 

PEMFC 
Proton exchange 

membrane 
H+ 

50-100 ℃, 

typically 80 ℃ 
<1 kW-100 kW 

60% direct 

H2 40% 

reformed 

fuel 

 Backup power 

 Portable power 

 Distributed generation 

 Transportation 

 Specialty vehicles 

Anion 

Exchange 

Membrane 

Fuel Cell 

AEMFC 

Alkaline anion 

exchange 

membrane 

OH- 
30-90 ℃, 80-

100%RH 
<1 kW-100 kW 60%  Vehicles 

Solid Oxide 

Fuel Cell 
SOFC Ceramic  O2- 500-1000 ℃ 1 kW-2 MW 60% 

 Auxiliary power 

 Electric power 

 Distributed generation 

Alkaline 

Fuel Cell 
AFC 

Aqueous 

alkaline solution 
OH- 90-100 ℃ 1-100 kW 60% 

 Military 

 Space 

Phosphoric 

Acid Fuel 

Cell 

PAFC 
Immobilized 

phosphoric  acid 
H+ 150-200 ℃ 

5-400 kW, 

100 kW 

Module (liquid PAFC)  

40% 
 Distributed generation 

 

Molten 

Carbonate 

Fuel Cell 

MCFC 

Immobilized 

liquid molten 

carbonate 

CO3 
2- 600-700 ℃ 

300 kW- 3 MW 

300 kW 

module 

45-50% 
 Electric utility 

 Distributed generation 
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Figure 1.1 The structure and operational principle of PEM fuel cell (Zhou, 2015) 

PEMs with strong proton conductivity, low electronic conductivity, low 

permeability of fuel gases, low electroosmotic drag coefficient, good temperature 

resistance, high chemical stability, good mechanical qualities, and low cost have all 

been developed for use in fuel cell systems (Peighambardoust et al, 2009). PEMFCs 

have traditionally been based on perfluorinated sulfonic acid (PFSA) membranes, 

which have a perfluorinated backbone similar to polytetrafluoroethylene (PTFE, 

Teflon®) and pendant perfluorinated side chains linked to the main chain by ether 

bonds, as well as sulfonic acid groups at the end of these pendant chains. Among these, 

the Nafion® membranes family, which includes the PFSA membrane, is the most 

widely investigated. PFSAs' functioning window in the PEMFC is limited to 

temperatures below 100 °C (usually at 80 °C) despite its exceptional stability. The 

operation of PEMFCs at such low temperatures (LT-PEMFC) poses a number of 

technical obstacles, including keeping the membranes fully hydrated to achieve high 

proton conductivity via a humidification system, the need for very pure hydrogen 

supply, and the high cost of PFSA membranes (Asensio et al, 2010). 
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As a result of these disadvantages, more study into the development of PEMs 

for high temperature operation (HT-PEMFC) in the normal range of 100 to 200 °C is 

required. The next generation of fuel cell technology is known as HT-PEMFC. This is 

owing to the cost savings and reliability of LT-PEMFC in addressing various 

challenges, including enhanced reaction kinetics, impurity tolerance in the hydrogen 

feed, and the ability to use low-cost catalyst in the anode, heat rejection, and water 

management (Rosli et al, 2017). Acid-doped polybenzimidazole (PBI) membranes 

were used in the majority of HT-PEMFC studies. PBI is generally less expensive than 

PFSA and is thermally and chemically stable under a variety of circumstances. Acids 

including hydrochloric acid (HCl), nitric acid (HNO3), sulphuric acid (H2SO4), 

perchloric acid (HClO4), and phosphoric acid (H3PO4) might theoretically be 

combined with PBI to create acid-base (PBI) complex membrane systems. Phosphoric 

acid (PA) doped PBI membranes, in particular, shown excellent proton transport 

capabilities, allowing them to be employed in PEMFCs at temperatures as high as 200 

°C with little or no humidification (Li et al, 2004). Furthermore, PA is naturally proton 

conductive and thermally stable, with a low vapour pressure at high temperatures 

(Bose et al, 2011). In the last decade, great research and development activity on HT-

PEMFCs based on PA-PBI have resulted from these advantages. However, questions 

about the durability and stability of such PEMFCs in long-term fuel cell applications 

hampered their wider adoption. In more detail, the issues stem from PA leaching from 

PEM, which produces inhomogeneous PA distribution, resulting in proton 

conductivity degradation and subsequent decrease of PEMFC performance over time. 

PBI-PA membranes have been found to degrade due to PA leaching on several 

occasions. According to Leykin et al. (2010), the majority of acid escapes the 

membrane during the first 10 minutes because it is not chemically attached to the 

polymer but is held in the polymer by relatively weak hydrogen bonding and dipole 

interaction. As a result, over-stoichiometric levels of acid were extracted quickly. As 

a result of this issue, there was an inhomogeneous PA distribution, which reduced 

proton conductivity and impaired PEMFC performance over time (Berber et al, 2013). 

Furthermore, because Pt catalyst is poisoned by chemisorbed dihydrogen phosphate 

(H2O4P
-1) and hydrogen phosphate (HPO4

2-) ions, leaching of PA could reduce the 

oxygen reduction reaction (ORR) activity of Pt-based cathodes (Li, 2014). The slow 

kinetics of ORR and the transport constraints of protons and reactants at the cathode, 



  

6 

according to Su et al (2013), severely hampered the cell performance of PEMFCs 

operating at high temperatures. 

Alternative membranes with tightly bonded functional groups are required to 

solve the PA leaching problem caused by PBI. As a result, instead of phosphoric acid, 

this research focuses on membranes with highly phosphonated phytic acid 

(C6H18O24P6) molecules as a dopant. The bulky multi-phosphonated molecules with 

an abundance of hydrophilic hydroxyl groups around the cyclohexane ring are thought 

to be able to strongly participate in interactions with the functionalities in the PBI 

matrix, reducing the risk of leaching and improving its stability and durability, 

especially for long-term use. The focus of research is on creating manufacturing 

methods for introducing large amounts of phytic acid molecules and evaluating acid 

doping ability, mechanical properties, oxidative stability, and long-term performance 

in HT-PEMFCs. 

 

1.2 Problem Statements 

Previous studies showed that, the PFSA membrane consist of PTFE backbone 

is more compatible used in LT-PEMFC compared to HT-PEMFC. This is because at 

high temperature, the proton conductivity of PFSA membrane is decreasing due to 

their glass transition temperature ranging from 120 to 140 ℃ and the evaporation of 

water molecules which responsible for proton conduction is happened (Haider et al, 

2021).  

Therefore, modified PFSA membrane have been gaining attention and more 

research have been done to make PFSA membrane applicable for high temperature 

application. These including the incorporation of hygroscopic inorganic materials like 

SiO2 nanoparticles (Xu et al, 2020), graphene oxide, and ionic liquids (Díaz et al, 

2014), inorganic hetero poly acids like phosphotungstic acid (PTA) (Liu et al, 2020), 

and layered double hydroxide nanoparticles (Nicotera et al, 2014). Despite these 

modification is successfully improved the performance of ionic conductivity and meet 
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the precondition for use in HT-PEMFCs based on their thermal gravimetric analysis, 

however, the operating temperature of modified PFSA membranes is still not high 

enough to satisfy the requirement for HT-PEMFC because most of them can only work 

smoothly in the temperature range from 100 to 120 ℃ and high humidity level is still 

required to maintain high proton conductivity at high temperature for HT-PEMFC 

operation (Haider et al, 2021). 

Although the operating PEMFC at high temperature has many advantages and 

attractive features, there are several challenges associated with HT-PEMFC that need 

to be overcome before their further commercialization. These include (i) low acid 

doping level and low conductivity at dry conditions, (ii) acid leaching from membrane, 

and (iii) poisoning of catalyst by PA.  

Particularly, the conductivity of PBI/PA membrane greatly depends on the 

level of acid doping where PBI/PA membrane exhibit high conductivity only with high 

acid loadings, at least higher than 3.0 PA molecules per repeats unit of PBI. However, 

excess PA content would negatively affect the mechanical strength and leaching 

especially at higher temperature (Xu et al, 2011). This situation results in a reduction 

of conductivity and fuel cell performance and causing the free acid to poison the 

electrocatalyst at the cathode as discussed earlier.  

Despite the improvement in the aforementioned limitations by some 

modifications on the polymers structure and the use of composite membranes 

(Abouzari et al, 2019), acid leaching from PBI/PA materials is still a serious concern 

that lead to serious degradation of fuel cell components, which in turn affect the power 

density and performance of the fuel cell especially for long term operation. In this 

research, PBI based PEM membrane doped with a highly phosphonated phytic acid 

was developed as a regard to overcome the acid leaching from PBI/PA membrane.  
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1.3 Research Objectives 

The main aim of this research is to develop a new PBI-based PEM membrane 

containing highly phosphonated phytic acid (C6H18O24P6) molecules with low acid 

leaching characteristics for HT-PEMFC. Details of the research objectives are as 

follows: 

i. To investigate the effect of different porosity of PBI membrane toward 

different conditions of acid doping  

ii. To characterize the physicochemical properties of acid doped PBI with 

respect to the HT-PEMFC. 

iii. To evaluate the performance of acid doped PBI membrane in HT-PEMFC 

under control condition; such as temperature and relative humidity. 

 

1.4 Research Scope 

To achieve the above mentioned objective, the following scope has been 

considered. 

1. Preparation of new phytic acid doped PBI membrane using various doping 

conditions which divided into two phase; phase 1, direct doped of porous PBI 

membrane with the mix of PA and PyA solution with ratio (1:1) and the doping 

procedure were varied in terms of the temperature and immersion time. In 

phase 2, doping of porous PBI membrane with PA, then followed by doping 

with PyA under different temperature and immersion time. 

 

2. Establishing relationship between the applied membrane doping condition and 

acid doping level with proton conductivity of membranes. 
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3. Evaluation of PBI/acid based membrane properties with respect to HT-PEMFC 

requirements. Several characterization methods such as Fourier-Transform 

Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric 

Analysis (TGA) and Scanning Electron Microscopy (SEM). The through plane 

membrane resistance and conductivity of developed membranes were 

evaluated as a function of temperature and humidity level. 

 

4. Preparation of the membrane electrode assembly (MEA) by hot-pressing of 

commercial gas diffusion electrodes on the doped PBI/PyA membrane. The 

cell was constructed using bipolar plates in serpentine pattern Z-type gas flow 

configuration. 

 

5. Evaluation of acid doped membranes of various doping levels performance in 

HT-PEMFC in order to find the optimum acid-doping level and doping 

condition. The performance of developed membranes were evaluated at 

temperature range of 100-160 ℃ and low relative humidity (0-10% relative 

humidity (RH)). 

 

1.5 Significance of Study 

Phytic acid can potentially replace PA and lead to some advantages in the HT-

PEMFC including low leaching and enhanced performance. Despite such advantage, 

there are only a few studies addressing the behaviour of PBI membranes doped with 

phytic acid in HT-PEMFC application.  

 

However in this study, PyA was used as a co-dopant acid of PA. This is due to 

the PyA molecules have a big molecule that prevent PyA to be loaded fully into the 

PBI matrix. Therefore, PA was introduced first as a dopant since PA has small size of 

molecules compared to PyA, hence more acid molecules can be load in the PBI 

structure and form a big molecule of PBI/PA at the first layer. Then, this big molecule 

of PBI/PA make the big molecule of PyA possible to be loaded into the structure and 

form PBI/PA/PyA. With the presence of PyA as a caping in the second layer of 

PBI/PA/PyA managed to form more H2 bonding between them and resulting in the 
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formation of network-like and proton hoping pathway, then synergize the conductivity 

in the polymer Having of 6 acid groups in one molecules is expected to effectively 

interact with PBI matrix hence, improved its stability and durability especially for long 

term operation.  

In this study, a simple and cost effective technique were employed for further 

improve the efficiency of the membrane by implying various acid doping conditions 

in order to search an optimum acid-doping level of the membrane. This modification 

and improvement is believed to reduce the cost of maintenance system as well as 

improving the performance of the fuel cell operating at high temperature (100-160 ℃) 

and low relative humidity (0-10% RH). 

1.6 Thesis Outline 

This thesis is divided into four chapters. Chapter 1 explained the research 

background, problem statement, objectives, research scopes and significance of the 

present study.  Chapter 2 discussed the principle of PEM and focuses on the potential 

of HT-PEM in fuel cell application. In addition, the techniques used to modify the 

PBI/PyA membrane is also explained together with the previous study towards other 

applications. In Chapter 3, experimental work is addressed in detail. Materials and 

equipment are also introduced. The results obtained in this work concerning the 

membrane characterization, membrane evaluation and performance of modified PBI 

membranes with respect to HT-PEMFC are presented, analysed and discussed in 

Chapter 4. Finally, the findings from this research is summarized in Chapter 5 and 

some recommendation for the improvement of the research interest is also included. 
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