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ABSTRACT 

Wireless Capsule Endoscopy (WCE) is used widely as an implantable medical 
device to diagnose any irregularity inside the gastrointestinal tract in the human body. 
The distance between transmitter and receiver antenna, operating at 402 MHz, is 
considered to be in the near field region due to the distance being shorter than the 
wavelength. The previous radio link estimation by using the Friis equation is debatable 
in the near field situation. The radio link calculation method in the near field region is 
investigated in this research. Normal Mode Helical Antenna (NMHA) is proposed as 
the antenna used for the application in WCE due to its ability to be designed in small 
size and high efficiency. The designed transmitter NMHA is placed within a human 
body phantom with a dielectric constant ( r) of 11.6 F/m that represents fat tissues. The 
receiver NMHA is placed outside the phantom at a distance of 0.1 to 1.0 m from the 
transmitter. To establish a link budget for this condition, important parameters such as 
received power (PR), transmitted power (PT), the efficiency of the transmitter antenna 
( T) and receiver antenna ( R), reflection loss at the boundary which includes 
transmitted signal from vacuum to phantom (T1) and transmitted signal from phantom 
to free space (T2), dielectric loss (L ), spherical spreading of power, power density (W), 
and effective antenna aperture (Ae) are investigated. Based on the electromagnetic 
simulation results, the distance dependency of W is examined and the result of W 
1/(distance)2 is obtained. As for the simulation results for Ae, the relation of Ae of the 
receiver antenna is examined at different distance points and results of Ae = -30 dB is 
obtained. The simple equation of Ae is derived. The radio link equation is formed by 
employing W, Ae and other propagation loss factors of a medium that is presented in 
this thesis. The proposed equation is then compared with the power received, PR and 
S21 obtained from simulation. The calculated and simulated S21 obtained at distance 
0.1 m for fat phantom is -53.6 and -53.3 dB respectively. To validate the link design 
equation, different human body cases such as skin and stomach are studied. The 
calculated and simulated S21 results for skin phantom are -57.3 and -56.6 dB while for 
stomach phantom are -50.1 and -50.2 dB. The agreement between the calculated and 
simulated results shows that this equation can be used in the near field region. The 
proposed equation also agrees well for all three tissues. 
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ABSTRAK 

Wireless Capsule Endoscopy (WCE) digunakan secara meluas sebagai 
peralatan perubatan yang dapat digunakan di dalam tubuh manusia untuk 
mendiagnosis sebarang masalah yang mungkin wujud di dalam saluran 
gastrointestinal. Antena pemancar dan penerima beroperasi pada 402 MHz. Jarak di 
antara antenna pemancar dan penerima dianggap berada di kawasan medan hampir 
kerana jarak radius kurang dari saiz gelombang. Persamaan yang sedia ada untuk 
anggaran pautan radio menggunakan formula Friis di kawasan medan hampir boleh 
dipersoalkan. Justeru, kajian ini menyelidik kaedah pengiraan persamaan radio di 
kawasan medan hampir. Normal Mode Helical Antenna (NMHA) dicadangkan 
sebagai antena yang digunakan untuk aplikasi dalam WCE kerana kemampuannya 
untuk dibina dalam ukuran kecil tetapi mempunyai kecekapan yang tinggi. Pemancar 
NMHA diletakkan di dalam model badan manusia dengan pemalar dielektrik, r 11.6 
F/m yang mewakili lapisan lemak. Penerima NMHA diletakkan di luar model badan 
manusia pada jarak 0.1 hingga 1.0 m dari pemancar. Untuk menentukan anggaran 
pautan untuk keadaan ini, parameter penting seperti kuasa terima (PR), kuasa dihantar 
(PT), kecekapan antena pemancar ( T) dan antena penerima ( R), kehilangan pantulan 
di sempadan yang merangkumi isyarat dihantar dari vakum ke model (T1) dan isyarat 
dihantar dari model ke udara (T2), kehilangan dielektrik (L ), penyebaran kuasa sfera, 
ketumpatan kuasa (W) dan apertur antena (Ae) disiasat. Berdasarkan hasil simulasi 
elektromagnetik, kebergantungan jarak W diperiksa dan hasil W 1/(jarak)2 
diperoleh. Bagi hasil simulasi untuk Ae, hubungan Ae diperiksa pada titik jarak yang 
berbeza dan keputusan Ae bersamaan dengan -30 dB diperolehi. Persamaan yang 
diselidik kemudian dibandingkan dengan kuasa yang diterima, PR dan S21 yang 
diperoleh dari simulasi. S21 untuk tisu lemak bagi pengiraan dan simulasi pada jarak 
0.1 m diperoleh sebanyak -53.6 dan -53.3 dB. Bagi mengesahkan ketepatan 
persamaan, model tubuh manusia yang berbeza seperti kulit dan perut dikaji. 
Keputusan S21 yang dikira dan disimulasikan ialah -57.3 dan -56.6 dB untuk kulit 
manakala untuk perut ialah -50.1 dan -50.2 dB. Kesepakatan di antara hasil yang dikira 
dan hasil yang disimulasikan menunjukkan bahawa formula ini dapat digunakan di 
kawasan medan hampir. Persamaan yang dicadangkan juga sepakat dengan ketiga-tiga 
tisu.
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Implantable medical device is a device that is installed medically or surgically 

in the body and intended to remain in there for a certain time after the procedure (1). 

Wireless Capsule Endoscopy (WCE) is one of the medical devices that has the purpose 

of diagnosing the health conditions inside the gastrointestinal tract (2 4). Although 

WCE is already in the market as of today, the development to improve the capability 

of WCE still goes on (5).  

Medical devices such as WCE that need wireless imaging and monitoring, 

capability for the antenna to work at close distance is demanded (6). Figure 1.1 shows 

the illustration of WCE system configuration where the capsule is swallowed by a 

patient and data captured by the capsule is transmitted to the receiver outside the body. 

Evaluation of link budgets in the near field by (7) and (8) based on Friis equation and 

numerical evaluation using simulation software, FEKO. The evaluation shows that the 

Friis equation is possible to use in the near field with some adjustments on the original 

equation but the research is based on the antenna in free space, not in the human body. 

Thus, link budget equation for near field and in the human body is desirable.  

 

Figure 1.1 WCE system configuration 
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Figure 1.2 shows one type of WCE on market and its internal architecture (9). 

From the cross-section image, it can be seen that the antenna is one of the important 

components for WCE. Characteristics of an antenna that can be used for WCE 

application needs to be miniature in size with high bandwidth and efficiency (10,11).  

 

Figure 1.2 Cross section of a Wireless Capsule Endoscopy (9) 
 

There are several antennas that have been tested for the application of WCE 

such as conformal antenna (12), spiral antenna (13), patch antenna (14), dipole antenna 

(15) and NMHA (16). A normal-mode helical antenna (NMHA) is selected as the 

subject antenna for this research. NMHA is small in size and high efficiency (17). Due 

to its small coil structure, antenna size is effectively reduced (18). Moreover, the coil 

structure produces two radiation sources such as electric and magnetic currents. Hence, 

high antenna efficiency is possible (19). High efficiency antennas are needed to ensure 

a communication link can be established (20 22). 

WCE is a device used inside of the human body and has a receiver antenna 

outside of the human body. Methods for radio link design for application of WCE have 

been proposed by a number of papers such as (12-15). However, these papers did not 

focus on near field propagation and the methods proposed are used for far field 

transmission. For WCE that uses Medical Implant Communication Service (MICS) 

band as its operating band, the distance between the transmitter and receiver antenna 

is situated in near field region. Thus, near field link budget is more suitable compared 

to far field for this condition.  In a nutshell, a new link budget equation based on the 

concept of Friis equation but for near field and in the human body is established in this 

research. 
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1.2 Problem Statement  

Evaluation for link budget estimation in the near field region has been done by 

(7) and (8) but the evaluation is not done for application in the human body. WCE is a 

device that is implanted inside of the human body thus a radio link equation for in-

body propagation is needed. On the other hand, analysis of link budget for near field 

transmission in the human body was done by (23 26) but the papers only provide the 

analysis and observation of signal propagation in the near field. A comprehensive 

equation for calculation of link budget is not provided in those papers. Thus, analysis 

and clarifying the important parameters for near field link budget design in the human 

body and validation of the equation through simulation is desirable.  

The establishment of a suitable radio link budget for near field transmission is 

needed. In order to establish the near field radio link budget, a few important aspects 

need to be considered and achieved. These aspects include the matters on how to 

clarify the important parameters needed for near field radio link budget equations for 

WCE, how to analyse and express these parameters into equation from the changes in 

the electric field shown in the simulation and how to produce an analytical equation 

for near field radio link equation. These questions reflect the problems needed to be 

solve through this research in order to fulfil the requirement needed to the 

establishment of a near field radio link design of the receiver antenna for the 

application in Wireless Capsule Endoscopy. 

 

 

 

 

 

 

 

 



 

24 

1.3 Research Objectives 

This research embarks on these objectives:

i. To establish an equation for near field radio link budget of NMHA in human 

tissues by clarifying important parameters through theoretical calculation. 

ii. To compare the theoretical calculated values for radio link budget of NMHA 

in fat tissue with simulation in order to validate the values of power density, 

antenna equivalent area, power received and S21 

iii. To validate the equation by applying it on different tissues which are skin and 

stomach tissues.  

 

1.4 Research Scope 

This research is aimed to propose a radio link budget equation that can be used 

for NMHA when it is implanted inside of the human body with a receiver placed a few 

distance outside of the body. The scope of this research is highlighted as below 

i. Identify the important parameters needed in the equation for estimating link 

budget in near field of NMHA in fat phantom. Identification is done by 

deducing an equation on radio link budget through calculation and considering 

important factors regarding signal propagation and transmission. Parameters 

that consider important are power transmitted (PT), power received (PR), 

efficiency of the antenna ( ), dielectric loss (L ), transmission coefficient at the 

boundary (T), power spreading in free space (LS), power density (W) and 

antenna equivalent area (Ae).  

ii. Modelling of NMHA as the transmitter and receiver is done in the simulation 

software FEKO. Performance analysis through the simulation includes self-

resonant structures, input impedance and efficiency for NMHA performance 
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analysis. Through the simulation, near field distribution simulation analysis for 

power density and analysis of antenna equivalent area is done.  

iii. Comparing the power received and S21 results obtained from calculation and 

simulation to evaluate the proposed equation for link budget design. Validate 

the equation by testing it using different tissues such as skin and stomach. 

 

1.5 Significance of Study 

Establishment of a suitable link design equation for Wireless Capsule 

Endoscopy system in the near field condition is important for precise design of WCE 

system. This is due to most of the application of WCE is in near field regions with low 

operation frequency. The derivation of the link design equation could improve the 

performance of WCE and improve the knowledge in signal propagation in the near 

field region. In this research, the designed equation is tested and validated in three 

different tissues such as fat, skin and stomach. Therefore, the proposed equation is 

suitable for the usage in fat, skin and stomach tissues.  

 

1.6 Summary of Research Contents 

The contents of the research are summarized in Table 1.1. The means for this 

research is divided into two which are simulation and calculation. By using the 

simulation software FEKO, transmitter and receiver antenna is modelled based on 

design proposed by (27) and (28). Near field distribution and power relation is 

analysed to clarify the factors that could affect link budget in near field propagation. 

Deduction of the equation for is done to clarify the parameters needed for link budget 

design through calculation. Comparison between simulation results and calculation 

results are done in order to check the validation of the proposed equation before the 

establishment of the final equation for link budget in the near field.  
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Table 1.1 Summary of research contents 

Problem 
Objective (Design 

principle)
Means Subject Contents

Simulation

Transmitter 
and receiver 
antenna

Determine -
resonant structure and 
efficiency in the human body 
(transmitter) and in free space 
(receiver). 

Antenna design 
model by (27) and 
(28).

Near field 
distribution 

Checking the pattern and 
changes in power density 

Analyzing the 
factors that could 
affect link budget 
estimation

Power 
relation

Obtaining the value of power 
received and S21

Calculation

Deduce 
equation

Clarify the parameters needed 
for link budget in fat phantom

Analyse the changes in the 
power density and aperture area 
when distance increase

Comparison 

Calculate the power received 
and S21 using deduced equation 
and comparing with the 
simulation Establish the 

equation for link 
budget

Validation 
Testing the proposed equation 
with different tissues such as 
skin and stomach. 
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1.7 Research Limitation 

This research was done during the outbreak of the pandemic Covid19 

throughout the world. Movement Control Order has been implemented in this country 

causes this research cannot be done in laboratory with proper equipment. Therefore, 

the fabrication and measurement of the antenna cannot be done. In order to fill in the 

gap of the limitations, more simulation results are presented in different situation for 

the purpose of validation.  

1.8 Thesis Organization 

This thesis is structured for five chapters. In Chapter 1 - Introduction gives the 

overall overview of the research. Research background, problem statements, 

objectives, research scope and significance of the research is presented in this chapter. 

Chapter 2 - Literature review explains the field region and the factors that would affect 

link budget in general. Review of previous research regarding link budget for the 

application of WCE is also presented. In Chapter 3 - Methodology, method in 

obtaining the link budget equation for NMHA is explained. Apart from that, simulation 

methods for electromagnetic software such as Method of Moments (MoM) are 

explained in detailed. Chapter 4 and Chapter 5 are presenting the results obtained 

through calculation and simulation. The results discussions are also done in these 

chapter respectively. Chapter 6 is the validation of the proposed equation with different 

tissues since the equation was designed based on fat phantom. Thus, validation is done 

for skin and stomach phantom. Chapter 7 is the conclusion part of this thesis. 

Summarization of the whole thesis is explained in this chapter. In this chapter also the 

contribution and suggestions for possible future directions are presented. 
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