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ABSTRACT 

Graphene is known as the material of wonder for its extraordinary properties 

that can be utilized for the technology advancement in various fields. In this work, 

graphene based saturable absorber (SA) was used for pulsed laser generation. The SA 

was integrated within an erbium-doped fiber laser (EDFL) ring cavity for passive Q-

switching, generating pulsed laser. Passively Q-switched EDFL has been achieved by 

using various materials as SAs, with the current trend focuses on the 2-Dimensional 

(2D) materials. Graphene was the most favourable for this research due to its low-cost 

and simple fabrication compared to the complex fabrication process, narrow 

wavelength range, and unstability in ambient temperature of other 2D materials. Two 

types of graphene were used as the starting material for SA fabrication in this work: 

electrochemical exfoliated (ECE) graphene (GrE) and graphene filament (GrF). The 

two graphene were combined with host polymers with the graphene : polymer ratios 

of 1 : 4, 2 : 3 and 2.5 : 2.5 to develop free standing films for easy integration within 

laser ring cavity. The host polymers used were polyvinyl alcohol (PVA) and chitin in 

which GrE used both to develop GrE-PVA SA and GrE-chitin SA respectively, while 

GrF was combined with chitin to develop GrF-chitin SA. The absence of PVA as host 

polymer for GrF-based SA was due to the usage of tetrahydrofouran (THF) in the 

preparation of the filament that reacted poorly with the PVA, inhibiting the formation 

of a free-standing SA film. Chitin is an alternative host polymer to produce a more 

environmental-friendly SA. Comparing the performance of the SAs, the lowest 

threshold pump power for the Q-switching activity was 16.7 mW, obtained by GrF-

chitin 2.5 : 2.5 while the highest repetition rate and lowest pulse width were obtained 

by GrF-chitin 2 : 3 at 121.4 kHz and 3.32 µs respectively. On the other hand, the 

highest signal-to-noise ratio (SNR) was 88.88 dB which was generated by GrE-PVA 

2 : 3. Ultimately, the SAs used in this work is deemed stable for the use of pulsed laser 

generation by passive Q-switching as the lowest SNR value has also been considerably 

high at 64.64 dB. 
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ABSTRAK 

Grafin terkenal sebagai bahan yang mengagumkan kerana sifatnya yang luar 

biasa yang dapat digunakan untuk kemajuan teknologi dalam pelbagai bidang. Dalam 

kajian ini, penyerap boleh tepu (SA) berasaskan grafin digunakan untuk penjanaan 

laser berdenyut. SA disepadukan ke dalam rongga gelang laser gentian berasaskan 

erbium (EDFL) untuk menghasilkan laser berdenyut melalui suis-Q pasif. Suis-Q pasif 

bagi EDFL telah dicapai dengan menggunakan pelbagai bahan sebagai SA, dimana 

tumpuan semasa adalah pada bahan berasaskan 2 dimensi (2D). Grafin adalah bahan 

2D yang dipilih untuk kajian ini kerana cara pembuatannya yang ringkas.dan berkos 

rendah berbanding bahan 2D lain yang mempunyai proses pembuatan yang rumit, julat 

panjang gelombang yang rendah, dan ketidakstabilan dalam suhu bilik. Dua jenis 

grafin digunakan sebagai bahan awal bagi pembuatan SA dalam kajian ini, iaitu grafin 

daripada pengelupasan elektrokimia (ECE) (GrE) dan filamen grafin (GrF). Grafin 

digabungkan bersama polimer perumah dengan nisbah grafin : polimer 1 : 4, 2 : 3, dan 

2.5 : 2.5 untuk menghasilkan filem berdiri pegun bagi memudahkan disepadukan ke 

dalam rongga gelang laser. Polimer perumah yang digunakan adalah alkohol polivinil 

(PVA) dan chitin di mana kedua-duanya digunakan bersama GrE dan masing-masing 

menghasilkan GrE-PVA SA dan GrE-chitin SA manakala GrF digabungkan bersama 

chitin membentuk GrF-chitin SA. Ketidakserasian yang ditunjukkan oleh PVA 

terhadap tetrahidrofouran (THF) yang digunakan dalam penyediaan filamen 

menghalang pembentukan filem berdiri pegun berasaskan GrF dan PVA. Chitin ialah 

polimer perumah alternatif untuk menghasilkan SA yang lebih mesra alam sekitar. 

Sebagai perbandingan prestasi SA yang dihasilkan, ambang kuasa masukan terendah 

bagi operasi suis-Q adalah 16.7 mW, yang mana diperoleh oleh GrF-chitin 2.5 : 2.5 

sementara kadar pengulangan tertinggi dan lebar nadi terpendek diperolehi GrF-chitin 

2 : 3 pada 121.4 kHz dan 3.32 µs. Selanjutnya, nisbah isyarat kepada hingar (SNR) 

tertinggi adalah 88.88 dB yang mana dihasilkan oleh GrE-PVA 2 : 3. Secara 

keseluruhannya, SA yang digunakan dalam kajian ini adalah stabil bagi penghasilan 

laser berdenyut melalui suis-Q pasif memandangkan nilai SNR terendah juga boleh 

dianggap sebagai nilai tinggi, pada 64.64 dB. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The foundation for laser technology development was dated to the early 1990s, 

specifically 1917, by none other than Albert Einstein. In the publication titled “The 

Quantum Theory of Radiation”, Einstein had proposed the theory of “stimulated 

emission” when he was investigating the light interaction with matter. He had come 

out with the hypothesis that light consist of individual “energy packages” based on his 

take on the quantum hypothesis by Planck (Bertolotti, 2015). 

Only after 40 years was the “stimulated emission” theory put into practice by 

Charles Townes.  Townes had carried out experiments on microwaves that led to the 

device construction that was able to generate and amplify the microwaves. Crediting 

to Einstein’s theory, Townes’ discovery was named “Maser”, which is an acronym for 

“microwave amplification by stimulated emission of radiation”. Several years later, 

Townes began exploring the prospect of extending the maser theory to a higher 

frequency and had a discussion with Gordon Gould on using optical pumping for this 

purpose (Hecht, 2010). After their discussion, both Townes and Gould work 

independently to find the solution, which leads to the invention of laser, which is an 

acronym for “light amplification by stimulated emission of radiation”, by Gould 

(Hecht, 2005). Since then, many researchers had taken interest in developing laser 

devices while figuring out the suitable active medium to excite its population 

inversion. Despite a hypothetical statement that ruby is not compatible with lasers, 

Theodore Maiman had investigated the material and proven the statement wrong. His 

discovery of ruby laser in 1960 was assembled from a flash lamp, a chromium-doped 

ruby, and a metal sleeve (Hecht, 2005). Though his discovery was not given much 

attention during his time, the significance of his discovery that was rooted back to the 

principle proposed by Einstein had become clear throughout the years. 
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After the demonstration of ruby laser by Maiman, Elias Snitzer proposed the 

use of glasses doped with rare earths in laser devices, resulting in the first 

demonstration of fiber laser. Later in 1964, he teamed up with Charles Koester to 

further develop his idea into the invention of the first fiber amplifier by imitating 

Maiman’s ruby laser design with fiber instead of ruby (Hecht, 2010). Twenty years 

later, the concept of fiber laser by Snitzer had inspired David Payne to dope the fiber 

core with rare earth element. From one of his extensive experiments, Payne had 

reported that erbium doped fiber had produced gain near the minimum attenuation 

region of optical fiber (Mears et al., 1987). Furthermore, the pump wavelength of 980 

nm and 1480 nm had been found to provide good erbium amplification for a practical 

amplifier design, by Payne’s research group and Snitzer respectively (Laming et al., 

1989; Snitzer et al., 1988). The broad bandwidth and low crosstalk of erbium amplifier 

is advantageous for wavelength-division multiplexing (Taga et al., 1990). The 

advancement in rare-earth doped optical fibers technologies had a big contribution on 

the fiber laser construction, in which alignment-free operation at different operating 

wavelengths are possible. 

Technological advantages offered by pulsed laser sources made them the 

reliable alternatives for various applications, ranging from optical communications to 

industrial materials processing (Siegman, 1986). Common methods used in pulsed 

laser generation are Q-switching and mode-locking, where both can be realized 

through active or passive techniques though the latter is frequently preferred due to its 

simplicity and flexibility. For active technique, external modulators are needed to 

induce pulses when triggered by electrical signals (Kieu and Mansuripur, 2006). This 

resulted in a complicated and costly laser system with lack of reliability and 

controllability. On the other hand, the passive technique modulates the intracavity loss 

using a saturable absorber (SA) as opposed to an external modulator (Wang et al., 

2011). This in turn, provide a simple and flexible laser system. 

The remarkable quality of graphene in terms of mechanical strength, structural 

substantiality along with the electrical and chemical properties, has pushed graphene 

to the center of attention in various fields, especially photonics. Since the first report 

by Zhang et al. (2009), graphene has been widely used as SA in pulsed laser generation 
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(Yusoff et al., 2019; Zuikafly et al., 2019; Aziz et al., 2017; Mansoor et al., 2018; 

Hussin et al., 2017). It’s astounding characteristics such as ultrafast carrier relaxation 

time and ultra-broadband operating wavelength with nonlinear optical response has 

made it an excellent SA material for pulsed laser generation (Bonaccorso et al., 2010). 

1.2 Problem Statement 

Various SAs have been introduced for passive Q-switching throughout the 

years. Among them are semiconductor saturable absorber mirror (SESAM), and 2D 

materials such as carbon nanotube (CNT), black phosphorus (BP), tungsten disulfide 

(WS2) and graphene. SESAM is one of the earliest SAs used for pulsed laser 

generation, but it has a complex fabrication process and narrow wavelength range. 

This motivates the interest towards 2D materials as SA with remarkable saturable 

absorption properties. However, in practical environment, SAs based on 2D materials 

also have some drawbacks such as the range of the absorption wavelength of CNT SA 

depends on the tube diameter while BP SA is easily degraded as it is unstable in 

ambient atmosphere (Wang et al., 2019). As for graphene SA, although it has low 

modulation depth and large non-saturable losses, its zero-bandgap property, wide 

operating wavelength along with its simple and low-cost fabrication justified its 

relevance as a good SA in terms of performance and economic. The merits and 

demerits of some SA materials are summarised in Table 1.1. 
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Table 1.1 Pros and Cons of Some Saturable Absorber Materials (Wang 

et al., 2019) 

Materials Advantages Disadvantages 

SESAM 
Mature technology 

Wide applications 

Complex fabrication 

Narrow wavelength range 

High cost 

CNT 
Wide waveband absorption 

Low cost 

Absorption wavelength range 

depends on tube diameter 

Difficult to disperse 

BP 
Direct and layer-sensitive 

bandgap 

Unstable in ambient 

atmosphere 

WS2 Layer-sensitive bandgap Complex fabrication 

Graphene 

Zero bandgap 

Wide operating wavelength 

Simple fabrication 

Low cost 

Low modulation depth 

Large non-saturable losses 

 

The first mechanical exfoliation of graphite for graphene synthesis in 2004 had 

spurred various breakthroughs and discoveries in the conventional graphene synthesis 

methods (Vijayaraghavan, 2013). Mechanical exfoliation method was replaced with 

chemical exfoliation method such as chemical vapour deposition (CVD) despite the 

low cost of the former, to cater for large scale production and production of graphene 

flakes with the size of lower than tens of micrometers (Avouris and Dimitrakoplous, 

2012). Despite the possibility of large production of single-layer as well as few-layer 

graphene, the various variables involved in the CVD process such as different substrate 

choices and cooling rates may negatively affect the segregation of carbon (Yu et al., 

2008; Bae et al., 2010). On the other hand, graphene synthesis by graphitization of 

hexagonal silicon carbide (SiC) crystals involving high temperature of approximately 

1500 °C reported by Emtsev et al. (2009) produced irregular graphene layers with 

wrinkled surface and restricted mobility of graphene carriers (Farmer et al., 2009). 

Taken into consideration of the limitations of these synthesis methods, an 

electrochemical exfoliation method is used for graphene synthesis in this research. 

Using apparatus that are mostly available in the laboratory, this synthesis method can 
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be done in room temperature within the span of few hours. Other approach is by using 

a commercially available graphene filament. The fabrication of graphene saturable 

absorber from both approaches can be done at room temperature with relatively simple 

procedure. 

For graphene SA fabrication, graphene was homogenized with host polymer 

for ease of integration within the laser cavity. Saturable absorber materials ranging 

from topological insulators to metal nanoparticles had widely used synthetic polymers 

such as polydimethylsiloxane (PDMS), polyvinyl alcohol (PVA), polyethylene oxide 

(PEO), and polymethyl methacrylate (PMMA) for that purpose (Aziz et al., 2017; Ng 

et al., 2020; Nady et al., 2018; Zhang et al., 2018). However, with the increasing 

environmental awareness, biodegradable and compostable alternatives in various 

aspects are passionately explored. Hence, chitin biopolymer is included in this work 

as an alternative to the conventional host polymer, namely PVA. The Q-switching laser 

performance of the fabricated graphene SAs in 1.5 µm region is reported, evaluated 

and compared in terms of repetition rate, pulse width, peak power, pulse energy and 

signal-to-noise ratio (SNR). 

1.3 Objectives 

The general purpose of this research is to demonstrate the pulse train of the Q-

switching operation in erbium-doped fiber laser (EDFL) ring cavity using graphene 

based passive SA. Hence, the objectives of this research are: 

1. To fabricate an environmental-friendly graphene-based SA using chitin 

biopolymer. 

2. To investigate the physical and optical characteristic of graphene-based SA. 

3. To generate and characterize pulsed laser in the 1.5 µm region in terms of 

repetition rate, pulse width, pulse energy, peak power, and signal-to-noise 

ratio. 
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1.4 Research Scope 

The research covers the fabrication process of graphene SAs, including 

graphene synthesis by electrochemical exfoliation. Detailed process for 

electrochemical exfoliation from the preparation of the sodium dodecyl sulphate (SDS) 

solution to the centrifugation of the graphene suspension was demonstrated. Besides 

electrochemical exfoliated graphene, graphene filament was also used to develop the 

saturable absorbers along with the host polymers of PVA and chitin. The preparation 

of PVA solution was also done. The surface morphology and thickness of the 

fabricated saturable absorbers were then identified by using field emission scanning 

electron microscope (FESEM) and 3D measuring laser microscope respectively. The 

surface morphology of the SAs was observed to identify the molecular structure of the 

SAs and validate the even dispersion of graphene in the polymer matrices. After that, 

the performance of the SAs in passive Q-switching laser generation in the 1.5 µm 

region is observed in terms of repetition rate, pulse width, peak power, pulse energy 

and SNR. Reliable Q-switched pulse is of high repetition rate and low pulse width in 

the range of kHz and µs respectively. Meanwhile, laser generated with SNR value 

greater than 30 dB is often depicted as possessing high laser stability. Performance 

comparisons were done on graphene SAs with different starting materials and also 

between those of different host polymers. 

1.5 Significance of Study 

This research contributes to the advancement of the pulsed laser generation in 

the 1.5 µm region which is prominent for telecommunication field. Application such 

as LIDAR, remote sensing, ranging, and 3D imaging may benefit from this 

advancement (Agrawal and Ganotra, 2020). The significance of the research includes 

the detailed demonstration of graphene synthesis through electrochemical exfoliation. 

Also, the use of graphene filament as the base material for graphene saturable absorber 

fabrication. Besides that, chitin biopolymer was also incorporated as an ecological-

friendly alternative to the conventional synthetic polymer, namely PVA. The 

performance of the graphene saturable absorbers with both host polymers were also 
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analysed in the passive Q-switching operation. This research demonstrated the 

application of a relatively new and more biological-friendly approach in the production 

of graphene saturable absorber that will contribute to the progress of fiber laser in the 

telecommunication field. 

1.6 Overview 

The thesis is organized in five chapters in which the first chapter introduced 

the background and history of laser, as well as the motivation and objectives of the 

research. The rest is as follows: 

Chapter 2 started off with the background of EDFL and Q-switching along with 

its key parameters. Along with the working principle of saturable absorber, the host 

polymer for its fabrication is also discussed as well as the integration method. Then, 

graphene and its properties are thoroughly reviewed as well as its application in pulsed 

laser generation. Not only that, synthesis method of graphene is also discussed. 

Chapter 3 compiles the methodology in realizing the objectives of this research. 

The fabrication process of the graphene SAs from preparation to the end-product is 

documented. Then, the characterization in terms of surface morphology and thickness 

is reported. After that, the fiber laser cavity used in this research is introduced along 

with its components followed by the equipment used during the experiment. The data 

collection and representation are also explained. 

Chapter 4 discusses the performance of the Q-switching operation within the 

EDFL cavity realized by the fabricated graphene SAs. 

Chapter 5 concludes the research along with suggestion for improvement in the 

future works extended from this study. 
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