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Abstract: This paper considers a version of VRP known as VRP with Stochastic Demands (VRPSD)

where the demands are unknown when the route is designed. The problem objective is to find a priori

route under preventive restocking that minimize the total expected cost, including travel cost and the

expected recourse cost, subject to the routing constraints, under the stochastic demands setting. The

Breeder Genetic Algorithm is proposed to solve this problem. BGA is a kind of GAs, which is especially

powerful and reliable in global searching. The BGA was compared to the standard Genetic Algorithm on

a set of randomly generated problems following some discrete probability distributions. The problem data

are inspired by real case of VRPSD in waste collection. From the results, it was found that the BGA was

clearly superior to standard GA in terms of solution quality. Compared to Bianchi et al’s GA, the BGA

also may lead to a better performance.
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INTRODUCTION

Since late fifties, the Vehicle Routing Problem

(VRP) has been and remains a rich topic for

researchers and practitioners. It becomes an area of

importance to operations research as well as its use for

real world applications. An integral component of

logistics is transportation, and a frequently arising

situation in the transportation and distribution of

commodities has usually been modeled as a Vehicle

Routing  Problem (VRP). Usually real  world VRP

arises  with  many  site constraints. VRP is a

generalized  problem  of  the Traveling Salesman

Problem  (TSP) in that the VRP consists in

determining m  vehicle, where a route is tour that

begins at the depot. The task is to visit a set of

customer in a given order and returns to the depot. All

customers must be visited exactly once and the total

customer demand of a route must not exceed the

vehicle capacity. Given a set of geographically

dispersed customers, each showing a positive demand

for a given commodity, the VRP consists of finding a

set of tours of minimum length (or cost) for a fleet of

vehicles. According to , the class of VRPs is a[1]

difficult one, since its elements are usually NP-hard

problems and they are generally solved by heuristic

methods.

The classical VRP models usually do not capture

an important aspect of real life transportation and

distribution-logistic problems, namely fact that several

of the problem parameters (demand, time, distance, city

location, etc) are often stochastic. Most existing VRP

models oversimplify the actual system by assuming

system parameter (e.g. customer demands) as

deterministic value, although in real application, it may

not be possible to know all information about

customers before designing routes. Stochastic

information occurs and has major impact on how the

problem is formulated and how the solution is

implemented. Neglecting the stochastic nature of the

parameters in a vehicle routing model may generate

sub optimal or even infeasible routes . [2]

As compared to the development in deterministic

case, research in Stochastic VRP is rather

undeveloped.  summarize the solution concepts and[3]

literature available on different kinds of SVRP

including the TSP with stochastic customers, the TSP

with stochastic travel times, the VRP with stochastic

demands, the VRP with stochastic customers and the

VRP with stochastic customers and demands. Stochastic

VRP cannot be solved as VRP since properties and the

optimal VRP solution do not hold for the SVRP .[4]
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Further, it calls for more complex solution

methodologies .[5]

This study focus on VRP with Stochastic Demands

(VRPSD) in which demand at each location is

unknown at the time when the route is designed, but is

follow a known probability distribution. This situation

arises in practice when whenever a company, on any

given day, is faced with the problem of collection/

deliveries from or to a set of customers, each has a

random demand. In this study, we deal with specific

case at solid waste collection. It is hoped that

optimization can take into account the stochasticity of

the problem in obtaining better routes or reducing cost.

In stochastic environment, due to its randomness in

customers’ demands, a vehicle capacity may be

exceeded during service. A route failure is said to

occur if the demand exceeds capacity and a recourse

action needs to be taken at extra cost. Assuming that

enough capacity is available at the depot, the vehicle

may return to the depot, replenish its load, and then

resume service at the point where failure occurred.

Therefore the vehicle will always be able to satisfy all

demands but the length of the corresponding tour

becomes a random quantity. 

The recourse action could be the vehicle resumes

service along the planned route, namely a priori

approach , or visiting the remaining customers[6]

possibly in an order that differs from the planned

sequence that is called re-optimization approach .[4]

There are two common recourse policies for a priori

optimization. The first is the simple recourse policy ,[5 ,7]

a vehicle returns to the depot to restock when its

capacity becomes attained or exceeded. In the second

approach , preventive restocking is planned at[8 ,2 ,9]

strategic points preferably when the vehicle is near to

the depot and its capacity is almost empty, along the

scheduled route instead of waiting for route failure to

occur. On the other hand, two most recent

computational studies in re-optimization approach are

done by . [10 ,11 ,1]

considered basic implementation of five[9]

metaheuristics for single vehicle: Iterated Local Search,

Tabu Search, Simulated Annealing, Ant Colony

Optimization and Evolutionary Algorithm (Genetic

Algorithm) that found better solution quality in respect

to cyclic heuristic. It is widely known that GA has

been proven effective and successful in a wide variety

of combinatorial optimization problems, including

certain types of VRP, especially where time windows

are included. The number of published work on the

application of GA for solving basic VRP, TSP,

VRPTW, VRPB, and multi depot VRP has been

growing. Different approaches were also proposed

based on different crossover operator, different

mutation operator, or replacement methods. The work

of  results that the performance of GA and TS seem[9]

to be not significantly different, due to the fact that

these algorithms find solutions values which are not

very different to each other.

Although pure GA performs well, mostly it does

not equal to TS.  have proposed the enhancement[12 ,13]

of GA for solving single VRPSD.  developed a[1 2 ]

permutation-based GA for VRPSD enhanced by

automatically adapting the mutation probability to

capture dynamic changing in population while in , a[13]

new scheme based on hybrid GA with TS was

proposed. In this study we propose the enhancement of

GA by using Breeder GA (BGA). According to , The[14 ]

BGA is a robust global optimization method where

selection, recombination and mutation are well tuned

and have a synergetic effect. To the best of our

knowledge, this is the first time BGA has applied for

solving VRPSD.

The Problem: VRP and its variants are at the core of

many industrial applications in transportation logistics.

In this study, a variant of VRP is studied where

customer demands are not deterministically known but

unknown until the time when the vehicle arrives at the

customer location. To deal with this problem, the VRP

is extended to cover the more realistic case of

uncertainty in customer demands by using VRP with

Stochastic Demands model. The customer demands are

unknown but assumed to follow specific probability

distribution according to the past experience about

customer demands.

This section presents the mathematical formulation

of the single VRPSD. Definitions of some of the

frequently used notations for the VRPSD are given as

follows:

(1). Customers and depot

V = {0, 1, ..., n} is a set of nodes with node 0

denotes the depot and nodes 1, 2, …, n correspond to

the customers to be visited. We assume that all nodes,

including the depot, are fully interconnected.

(2). Demands

iCustomers have stochastic demands î , i = 1, ..., n

which follows discrete uniform probability distributions

                             , k = 0, 1, 2, …, K . Assume

further that customers’ demands are independent.

Actual demand of each customer is only known when

the vehicle arrives at the customer location. 

(3). Vehicle and capacity constraint

A vehicle has a capacity limit Q . If the total

demand of customer exceeds the vehicle capacity, route

failure said to be occur. 

(4). Route
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A route must start at the depot, visit a number of

customers and return to the depot. A feasible solution

to the VRPSD is a permutation of the customers s =

(s(1), s(2), . . . , s(n)) starting and ending at the depot

(that is, s(1) = s(n) = 0) and it is called a priori tour.

(5). Route failure and recourse action

Route failure is said to be occur if the total demand

exceeds the vehicle capacity and the preventive

restocking policy  is employed.[2 ,9]

(6). Cost and VRPSD objective function

A =  {(i,  j) : i, j     V, I    j} is the set of arcs

joining the nodes and a non-negative matrix C ={    

: i, j    V , I    j} denotes the travel costs (distances)

between node i and j. The cost matrix C is symmetric

and satisfies the triangular inequality. The cost matrix

is a function of Euclidean distance; where the

Euclidean distance can be calculated using the

following equation:

Given a vehicle based at the depot, with capacity

Q, VRPSD under restocking policy requires finding

vehicle routes and a restocking policy at each node to

determine whether or not to return to the depot for

restocking before visiting the next customer to

minimize total expected cost. The costs under

consideration are:

- Cost of traveling from one customer to another as

planned.

- Restocking cost: the cost of traveling back to the

depot for restocking.

- The cost of returning to depot for restocking

caused by the remaining stock in the vehicle being

insufficient to satisfy demand upon arrival at a

customer location. This route-failure cost is a fixed

nonnegative cost b plus a cost of traveling to the

depot and back to the route.

A feasible solution to the VRPSD is a permutation

of the customers s = (s(1), s(2), . . . , s(n)) starting at

the depot (that is, s(1) = 0), and it is called a priori

tour. Let 0 6 1 6 2 … j 6 j+1 … 6 n be a particular

vehicle route. Upon the service completion at customer

j, suppose the vehicle has a remaining load q (or the

residual  capacity of the vehicle after having serviced

customer j), and let          denote the total expected

cost from node j onward. If      represents the set of

all possible loads that a vehicle can have after service

completion at customer j, then,        for q     

satisfies 

          (1)

where

  

 

        (2)

and

        (3)

with the boundary condition

          (4)

In  equations   (2-4),              represents  the

expected  cost  of  going  directly  to  the next node,

whereas          represents  the  expected  cost of the

restocking action. These equations are used to

recursively determine the objective value of the planned

vehicle route and the optimal sequence of decisions

after customers are served . In principle, this[9]

procedure leads to a dynamic programming since each

time a customer demand is revealed, a decision has to

be taken as to where the vehicle should proceed. The

expected cost-to-go in case of restocking, is constant in

q, since in case of restocking the vehicle will have full

capacity Q before serving the next customer, whatever

the  current  capacity  q  is.   On   the   other  hand,

            is a monotonically non-increasing function

in q,  for every fixed customer j. Therefore there is a

capacity threshold value     such  that, if the vehicle

has more than this value of residual goods, then the

best policy is to proceed to the next planned customer,

otherwise it is better to go back to the depot for

replenish .[2]
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Data: From our literature review, there is no

commonly used benchmark for the VRPSD; therefore

we will generate our own test bed. W e consider several

sets of randomly generated instances that simulate real

problem data from case study of solid waste collection

in Malaysia. On any given day, the company faces the

problem of collecting waste from a set of customer

location where the amount of waste disposal is a

random variable, while each collecting truck has a

limited capacity. The problem is to design a set of

solid waste collection routes, each to be served by a

truck such that the waste at each customer is fully

collected and the total expected cost is minimized. 

Based on experiments reported in , three factors[5]

seem to impact the difficulty of a given VRP instances:

number of customers n, number of vehicles m , and

filling coefficient f. In a stochastic environment, the

filling coefficient can be defined as

        (5)

where  E (    ) is the expected demand of customer i

and Q  denotes the vehicle capacity and for single

vehicle, m  is equal to 1. This is the measure of the

total amount of expected demand relative to vehicle

capacity and can be approximately interpreted as the

expected number of loads per vehicle needed to serve

all customers. In this experiment, the value of f is set

to 1.1.

Customer locations were generated in the [100,

100]  square following a discrete uniform distribution

with the depot  fixed at coordinate (50, 50). Each    

is then defined as travel cost from i to j, as a function

of distance traveled. Without loss of generality, it is

assumed that the cost of travel is RM 1 per unit

distance and it is assumed further that the distance is

ij ji iisymmetric, that is d  = d  and d  = 0. The customers

demands are following discrete uniform distributions:

U(1,5), U(6,10) and U(11,15) respectively. Twenty test

problems were generated randomly for each of the

problem size 10, 20 and 50. The problem data will be

generated using Minitab 14 software package.

The Proposed Algorithm: The BGA is inspired by the

science of breeding animals. In this algorithm, each

one of a set of virtual breeder has the task to improve

its own subpopulation. Occasionally the breeder imports

individuals from neighboring subpopulations. Now we

define the ingredients of the BGA. First, a genetic

encoding of the VRPSD, initialization and evaluation

of fitness function are made. Then improvement by Or

Opt local search, crossover and mutation are presented.

The proposed BGA was presented below.

Step 0. [Define] Define operator settings of GA

suitable with the problem which is VRPSD.

Step 1. [Initialization] Create an initial population P

of PopSize chromosomes that consists of constructive

heuristics solutions and randomly mutation of it where

all individuals are distinct or clones are forbidden.

iStep 2. [Fitness] Evaluate the fitness f(C ) of each

ichromosome C  in the population. The fitness is the

function of VRPSD objective function. 

Step 3. [Improvement] Apply improvement method by

using OrOpt local search for each individual 

Step 4. [Selection] Select T % best individual in

population to be parents for mating, set this set as S(t),

in this study T is in the range of 35 – 50%.

Step 5. [Crossover] Pair all the chromosomes in S(t)

at random forming pairs. Apply OX crossover with

probability pc to each pair and produce offspring, if

random number  pc then offspring is the exact copy

of parents.

Step 6. [Mutation] With a mutation probability pm

mutate the offspring using swap mutation.

Step 7. [New Population] Insert offspring to the

population. Form new population P(t+1)

Step 8. [Stopping Criterion] If the stopping criterion

is met then stop, and return to the best solution in

current population, else go to Step 9. The BGA

procedure is repeated until there were non improving

moves of the best solution for 500 successive

generations.

Step 9.[Acceptance Criterion] Check whether new

population is better than acceptance criterion, if yes, go

to Step 3, if no then go to Step 4. 

A. Chromosome Representation: In developing the

algorithm, the permutation representation or the path

representation or order representation is used since the

typical approach using binary strings will simply make

coding more difficult. Order representation is perhaps

the most natural and useful representation of a VRP

tour, where customers are listed in the order in which

they are visited. A chromosome represents a route and

a gene represents a customer and the values of genes

are called alleles. The search space for this

representation is the set of permutations of the

customers; every chromosome is a string of numbers

that represent a position in a sequence. Order

representation can be described in Figure 1.

Initialization: Usually the initial population of

candidate solutions is generated randomly across the

search space. However, other information can be easily



J. App. Sci. Res., 5(11): 1995-2005, 2009

2002

Fig. 1: Illustration of order representation

incorporated to yield better results. The inclusion of

good heuristic in initial solution is stated in  by using[15]

Clarke and Wright, Mole and Jameson and Gillett and

Miller heuristics for solving distance-constrained VRP

(DVRP) instances. In this study, we include

Randomized Farthest Insertion (RFI) and Randomized

Nearest Neighbour (RNN) to the initial solution. When

common FI starts with farthest node from depot, the

RFI builds a FI solution starting from a random

customer and then shifts the tour to start at the depot.

The population is an array P  of N (population size)

kchromosomes. Each chromosome P  is initialized as a

permutation of customers. Clones (identical solutions)

are forbidden in P to ensure a better dispersal of

solutions and to diminish the risk of premature

convergence. 

The population size is one of the important factors

affecting the performance of genetic algorithm. Small

population size might lead to premature convergence.

On the other hand, large population size leads to

unnecessary expenditure of valuable computational

time. stated that population size < 25 or > 50 will[15]

give moderate degradation of the average solution and

found that population size equal to 30 performs best.

Thus in this study, population size of 30 is

implemented. 

Evaluation: Once the population is initialized or an

offspring population is created, the fitness values of

candidate solutions are evaluated. The fitness value is

the function of VRPSD objective function. 

Selection: Let M(t) denote the mean fitness of the

population at time t. The change in fitness caused by

the selection is given by

and is called response to selection. R(t) measures the

expected progress of the population. Breeder measure

the selection with the selected differential, which is

symbolized by S(t). It is defined by the difference

between the mean fitness of the selected individuals,

Ms(t) and the population mean:

These two definitions are very important. They

quantify the most important variables. In the process of

artificial breeding, both R(t) and S(t), can be easily

computed. The breeder tries to predict R(t) from S(t).

Breeders often use truncation selection or mass

selection. In truncation selection with threshold T, the

T % best individuals will be selected as parents. T is

normally chosen in the range 10% to 50% .[16]

Crossover and Mutation: In this study, Order

Crossover (OX) and swap mutation were used. This

crossover operator extends the modified crossover of

Davis by allowing two cut points to be randomly

chosen on the parent chromosomes. In order to create

an offspring, the string between the two cut points in

the first parent is first copied to the offspring. Then,

the remaining positions are filled by considering the

sequence of cities in the second parent, starting after

the second cut point (when the end of the chromosome

is reached, the sequence continues at position 1) . In[17]

swap mutation, two customer locations are swapped,

and their positions are exchanged. This mutation

operator is the closest in philosophy to the original

mutation operator, because it only slightly modifies the

original tour. For example, choose two random

positions, i.e. position 2 and 7 and swap entries from

tour 

7,4,0,3,2,1,5,6

and the tour becomes

7,5,0,3,2,1,4,6

Stopping Criterion: In our implementation, the BGA

procedure is repeated until there were non improving

moves of the best solution for 500 successive

generations.

Acceptance Criterion: The connection between R(t)

and S(t) is given by the equation

tIn quantitative genetics b  is called the realized

theritability. It is normally assumed that b  is constant

for a number of generations. This leads to

In general, the progress due to a genetic search as

long as the ratio R(t)/S(t) is greater than 0.1. .[18]



J. App. Sci. Res., 5(11): 1995-2005, 2009

2003

Table 1: The Result of Normality Test of the differences One-Sample kolmogorov-smirnov test

RESULTS AND DISCUSSION

The algorithms compared are the Breeder GA

(BGA) and the standard GA. Twenty instances were

generated on each of the problem size 10, 20 and 50.

Each algorithm was tested on each instance for 50

iterations. Figure 2 shows the results obtained by the

GA and the BGA for each problem size. As it can be

observed from the box plots, it is worth noticing that

the relative performance of the algorithms is similar

across different problem size: the solution quality

produced by the BGA clearly outperforms the results

of standard GA since the BGA can yields lower total

expected cost for every problem size.

To verify that the differences between solutions

found by the two algorithms are statistically significant,

we performed paired samples test between GA and

BGA results for every number of nodes. The paired-

samples t-test procedure compares the means of two

variables for a single group. It computes the differences

between values of the two variables for each case and

tests whether the average differs from 0. Before the

paired t-test was conducted, the test of normal

distribution assumption of the difference between two

variables must be conducted. The results of

Kolmogorov-Smirnov test for normal distribution test

were given in Table 5.10 We reported the p-value for

the null hypothesis “The data follow normal

distribution” where the significance level which the null

hypothesis rejected is 0.95. The p-value that smaller

than 0.05 is sufficient to reject the null hypothesis. In

the table associated, the p-values for number of nodes

10, 20 and 50 are 0.066, 0.363 and 0.832, respectively.

Thus we can conclude that the difference values of GA

and BGA for all number of nodes follow normal

distribution and the paired t-test can be conducted for

these data. 

The p-value of paired difference test were

presented in Figure 5.12, the values were 0.037, 0.017

and 0.000 for number of nodes 10, 20 and 50,

respectively. These results show that the two algorithms

tend to yield different result. There were statistically

significant differences between the performance of GA

and BGA in term of solution quality for solving

VRPSD. The extent of this difference was shown well

by the confidence interval of the difference which not

encompasses zero. From the mean values of the

differences on Figure 5.12, it also can be shown that

on average, the BGA produced less total expected cost

than GA since the mean value of the differences

between BGA and GA (i.e. BGA - GA) were always

negative. In the other words, the mean values of total

expected cost resulted from BGA were less than the

cost obtained from GA.

In addition to the comparison between BGA and

GA, in this study the relative performance of our BGA

and standard GA were compared to the GA’s work of

Bianchi et al. (2004). Descriptive statistics for solutions

expected cost of these GA were reported in Table 2.

From Table 2, it can be shown that BGA shows

superiority over GA and Bianchi for almost all number

of nodes in terms of the mean value of cost obtained

from BGA is less than the cost obtained from Bianchi,

except for N = 10 where the relative performance of

BGA is similar to Bianchi. It is worth noticing that

standard GA developed in this study (that does not

involve local search), is able to compete with GA of

Bianchi that involve twice application of Or-opt local

search method that are in improving the initial

population and offspring. Probably it caused by the

management of initial population in our standard GA

that have more chromosome number than GA’s

Bianchi, generated from good heuristics and all

individuals must be distinct, thus with good heuristics

solutions involved in our standard GA, the diversity of

initial population is larger than GA of Bianchi but the

solution qualities were not worse than GA’s Bianchi.
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Fig. 2: The Box plots of solutions from GA and BGA

Fig. 3: Paired-differences test results between GA and BGA performance

Conclusion: The Breeder Genetic algorithm for solving

single VRPSD was presented. We have shown that the

algorithm is able to produce high quality results on the

test problems. The performance of the BGA was

compared with the standard GA. The results showed

that there were statistically significant differences

between the performances of the two algorithms;

further, the BGA can yield better solution quality in

terms of much less total expected cost. In general, the

proposed BGA may lead to a better performance in

terms of solution quality than the previous research on

GA by . [9]
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Table 2: Descriptive statistics for the solutions of metaheuristics implemented

ALGORITHM Number of No. of Problem Range M inimum M aximum M ean Std. Deviation

nodes Instance

BGA_10 10 20 109.00 242.00 351.00 301.5500 34.07341

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

GA_10 109.00 242.00 351.00 302.6000 34.05735

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

BIANCHI_10 109.00 242.00 351.00 302.0700 34.69927

BGA_20 20 20 129.00 327.00 456.00 392.5500 37.97572

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

GA_20 133.20 327.00 460.20 395.2800 38.62704

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

BIANCHI_20 131.20 327.00 458.20 394.0300 37.92726

BGA_50 50 20 103.00 554.00 657.00 598.0000 28.98094

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

GA_50 151.60 564.60 716.20 620.6700 35.12470

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

BIANCHI_50 110.20 553.80 664.00 602.5000 28.52954
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