
 

POULTRY ESOPHAGUS DETECTION USING RETINANET AND MASK  

REGION-BASED CONVOLUTIONAL NEURAL NETWORK OBJECT 

DETECTION MODEL 

 

 

 

 

 

 

 

 

NOR AZIAH AMIRAH NOR MUHAMMAD 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Philosophy 

 

 

 

Malaysia-Japan International Institute of Technology 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

MARCH 2022 



iv 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my family, who have supported me on my journey 

in completing this study. To my friends and lab mates who have kept me motivated 

and given words of encouragement along the way. Thank you to all the important 

people in my life. 

  



v 

ACKNOWLEDGEMENT 

In preparing this thesis, I was in contact with many people, researchers, 

academicians, and practitioners. They have contributed towards my understanding and 

thoughts. In particular, I wish to express my sincere appreciation to my main thesis 

supervisor, Dr. Uswah Khairuddin, for encouragement, guidance, critics, and 

friendship. I am also very thankful to Professor Dr. Rubiyah Yusof for her guidance, 

advice, and motivation. Without their continued support and interest, this thesis would 

not have been the same as presented here. 

I am also indebted to MJIIT, Universiti Teknologi Malaysia (UTM) for funding 

part of my Master’s study. Librarians at UTM and the staff of CAIRO also deserve 

special thanks for their assistance in supplying the relevant pieces of literature and 

providing a working space. 

My fellow postgraduate student should also be recognized for their support. 

My sincere appreciation also extends to all my colleagues and others who have 

provided assistance on various occasions. Their views and tips are useful indeed. 

Unfortunately, it is not possible to list all of them in this limited space. I am grateful 

to all my family members. 

  



vi 

ABSTRACT 

Syariah Compliance Automated Chicken Processing System (SYCUT) is a 

system for monitoring the slaughtering process to ensure that chickens are slaughtered 

in accordance with sharia of Islam. SYCUT uses vision inspection technology to 

determine whether slaughtered chickens are halal or otherwise. The vision inspection 

technology consists of a detection module to detect whether the esophagus of chickens 

is cut accordingly. The researcher employed Viola-Jones object detection framework 

to train the detection module. The detection module had problems due to images of 

esophagus that were bloodied, blurred, or occluded. This resulted in a low detection 

rate in the system. Besides, a conventional method requires image preprocessing tool 

like low-pass filter and Otsu’s thresholding to improve the conditions of the images 

before detection which adds to the computational cost. In this study, the researcher 

divided image inputs into categories to reduce misclassification and aid in data 

annotation. Then, the researcher proposed a poultry esophagus detection system based 

on deep learning to improve the current algorithm in SYCUT. The researcher 

combined the deep learning method with the RetinaNet and Mask R-CNN models, 

which could perform segmentation and object detection in a single image. The 

researcher then compared the proposed method with the previous conventional 

SYCUT algorithm. The proposed method could detect bloodied and occluded images 

more accurately. The developed algorithm improves overall esophageal detection 

performance from 68.65 to 92.77 per cent. The SYCUT performs efficiently even in 

uncontrolled working environments due to the effectiveness of the developed deep 

learning method. However, the limitation of this deep learning method is it needs huge 

data for training. This research only improves the detection of certain image types, like 

bloodied and occluded. Future work should include improving the precision-recall 

value of the system and its real-time implementation for esophageal detection in real 

or simulated environments.  
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ABSTRAK 

Sistem Pemprosesan Ayam Automatik Patuh Syariah (SYCUT) adalah sistem 

yang digunakan untuk memantau proses penyembelihan untuk memastikan bahawa 

ayam yang disembelih menepati Syariah Islam. SYCUT menggunakan Teknologi 

Pemeriksaan Visi untuk mengesan dan mengklasifikasikan sama ada ayam yang 

disembelih adalah halal atau tidak. Teknologi Pemeriksaan Visi mengandungi modul 

pengesan untuk mengesan sama ada esofagus ayam dipotong dengan betul. Penyelidik 

menggunakan rangka kerja pengesanan objek Viola-Jones untuk melatih modul 

pengesan. Modul pengesan berhadapan dengan masalah hasil daripada imej-imej 

esofagus seperti imej yang berdarah, kabur dan terhalang. Ini mengakibatkan kadar 

pengesanan yang rendah dalam sistem. Selain itu, kaedah konvensional memerlukan 

alat prapemprosesan imej seperti penapis laluan-rendah dan pengambangan Otsu 

untuk menambah baik keadaan imej sebelum pengesanan, menyebabkan kos pengiraan 

bertambah. Di dalam kajian ini, penyelidik membahagikan pemasukan imej kepada 

kategori masing-masing bagi mengurangkan klasifikasi salah dan membantu dalam 

anotasi data. Kemudian, penyelidik mencadangkan sebuah sistem pengesan esofagus 

unggas yang menggunakan pembelajaran dalam bagi menambah baik algoritma sedia 

ada dalam SYCUT. Penyelidik menggabungkan kaedah pembelajaran dalam dengan 

model RetinaNet dan Mask R-CNN yang boleh melakukan segmentasi dan 

pengesanan objek dalam satu imej. Penyelidik membandingkan kaedah yang dicadang 

dengan algoritma konvensional yang digunakan SYCUT sebelum ini. Kaedah yang 

dicadangkan ini dapat mengesan imej yang berdarah dan terhalang dengan lebih tepat. 

Algoritma yang dibangunkan dapat meningkatkan prestasi pengesan esofagus 

daripada 68.65 ke 92.77 peratus. SYCUT dapat berfungsi dengan cekap walaupun 

dalam persekitaran kerja yang tidak terkawal kerana keberkesanan kaedah 

pembelajaran dalam yang dibangunkan. Walau bagaimanapun, kaedah pembelajaran 

dalam ini mempunyai batasan di mana ia memerlukan sejumlah data yang besar. 

Penyelidikan ini terbatas kepada penambahbaikan pengesan untuk jenis pemasukan 

imej tertentu sahaja iaitu imej jenis berdarah atau terhalang. Kerja di masa hadapan 

perlu melibatkan peningkatan kadar “precision-recall” dalam sistem dan pelaksanaan 

sistem masa nyata untuk pengesanan esofagus dalam persekitaran sebenar atau tiruan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

1.2 Problem Background 

The global Muslim population was 1.8 billion in 2011 and has been steadily 

increasing since then [1,2]. According to Zubairi and Abdul Ghani [3–5], the global 

halal market for food and non-food products is estimated to be worth USD 2.1 trillion 

per year, with USD 150 billion for halal food trade, and it is growing as a result of 

global trends and international initiatives. The halal market piques the interest of both 

Muslim and non-Muslim producers and consumers worldwide. In 2017, the Malaysian 

halal industry was valued at $30 billion, and it is expected to grow by 25% over the 

next five years [6]. Chicken is consumed at a rate of about 50 kg per capita per year, 

and it is the second-most popular meat among Malaysians [7]. Broiler farms produce 

approximately 840 million chickens per year [8].  Annual production of poultry eggs 

and meat ranges from RM 1.78 billion to RM 6.03 billion [9]. According to one of the 

SYCUT reports [10], a slaughterhouse can handle up to 80,000 chickens per day. 

According to Md. Yusof [11], halal or lawful meat is meat obtained by 

slaughtering using Islamic-compliant methods. Consuming meat that has not been 

slaughtered in the name of Allah is considered unlawful and prohibited in Islam. The 

Islamic way of slaughtering an animal includes cutting the trachea, esophagus, carotid 

arteries, and jugular veins; using sharp tools; draining the blood; not causing pain to 

the animal. Not all slaughterhouses confirmed the use of halal slaughter methods, and 

the cost of highly automated chicken processing machines is prohibitively expensive 

for small and medium-sized businesses. To address these issues, a Syariah Compliance 

Automated Chicken Processing System (SYCUT) was developed [12]. The SYCUT 

vision inspection system, on the other hand, goes through several challenges. Previous 
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research employs a low-pass filter (LPF) [13] and Otsu’s thresholding technique [14] 

for image preprocessing and segmentation and uses the Viola-Jones object detection 

framework [15] to detect chicken esophagus in an image. 

Previous studies show an unsatisfactory overall detection performance from 

the system, which is mainly caused by the occlusion of chicken blood or feathers that 

partially or completely cover the esophagus and the chicken neck is not fully facing 

the camera, making detection impossible. The overall performance of the system, 

which reflects the loss function in which an error of 1 is added to the overall error if 

the system fails to detect the esophagus in a chicken, is 68.65% on average across two 

experimental sites. The esophageal invisibility rate, which is mainly caused by 

occlusion and position problems, is an average of 27.55% at both experimental sites. 

Some images are problematic due to poor illumination, motion blur, and other forms 

of visual noise that affect the overall system accuracy.  

Based on these previous findings, the improvements made in this study are on 

the software side to improve detection accuracy and overall performance. This study 

does not address potential solutions to the esophageal invisibility rate, which would 

necessitate hardware configurations such as multiple camera angles. 

1.3 Problem Statement 

The previous work report [16] addressed the main problems of poor 

performance for detecting partially occluded esophagus in images, as well as lighting 

variation and noise in the images. The existing method, which implements image 

preprocessing and conventional object detection methods, is unsuitable for system 

robustness, which is important for input images with varying quality and conditions in 

a real-world environment. As a result, shifting SYCUT from a conventional machine 

learning method to a deep learning method can solve the system’s robustness 

requirement by eliminating the need to preprocess the image before detection. Object 

detection systems using deep learning methods have been shown to achieve good 

accuracy, especially concerning image datasets of varying conditions [17–20]. 
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The SYCUT project does not have a properly organized dataset for system 

analysis and evaluation. The image and video datasets from two sites (Az-Zain and 

3P) should be compiled and filtered. The images should then be categorized according 

to their problems, which include bloodied, blurred, dark, occlusion, and position 

problems. The different categories of problematic images aid in the result analysis in 

determining which problem in the images leads to poor detection results. This also 

addresses the low detection accuracy caused by certain problematic images by 

employing the right methods for resolution.  

One of the current challenges faced by the system is the poor condition of the 

captured images, which leads to poor detection results [16]. This study focuses on and 

resolves problematic images such as bloodied and occluded images. As a result, a more 

accurate detection method for these problematic images is required. The main 

approach of deep learning can be used to improve accuracy. 

The conventional method of detecting the esophagus in an image, as used in 

the previous work of SYCUT [21], is not the most accurate or computationally fast. 

Therefore, comparison and analysis of the two methods would shed more light on 

which method is better suited for detection. The implementation of deep learning is 

expected to be more effective in combating the accuracy and computational 

challenges. 

1.4 Research Objectives 

The following are the research objectives of this study: 

a) To improve dataset organization and include image annotation for data leveling 

in the system. 

b) To develop a more effective method for esophageal detection using RetinaNet 

and Mask R-CNN deep learning. 

c) To compare and analyze the use of conventional and deep learning methods 

for esophageal detection. 
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1.5 Research Scope 

This study examines the challenges encountered when applying esophageal 

detection to a real-world dataset. Some of the examples of problematic images in the 

acquisition step are dark, bloodied, and occluded images. Clear, bloodied, and 

occluded images were used to test the robustness of the deep learning method. The 

potential solutions to these challenges were tested and discussed. Due to the lack of a 

suitable GPU for real-time system testing, the study was conducted using still images. 

The implementation in this study can be translated into real-time object detection in a 

poultry processing plant environment. 

The research is limited to using pre-existing datasets from previous work where 

a site or new slaughtered chicken samples are not currently accessible. The 

experiments were conducted using software methods that, while unable to solve some 

esophageal invisibility problems, focused on the partially occluded dataset. The dataset 

was divided into two parts: the control dataset, which contains clear images; and the 

bloodied and occluded dataset, which was used to test the robustness and ability of the 

deep learning method to detect occluded esophagus. 

1.6 Research Significance 

This study focuses on problem-solving when dealing with images taken in a 

challenging environment. It emphasizes the use of deep learning to improve 

esophageal detection and seeks an alternative to using conventional methods to detect 

a specific object. The research is significant in terms of developing a good detection 

platform for the detection of the esophagus or other similar-looking objects. The 

research also contributes to the improvement of SYCUT. The findings of this study 

may be worth further investigation and trigger better ideas and implementations in the 

field of image processing. 
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1.7 Thesis Organization 

This chapter describes the previous work on the SYCUT project. The 

significance of this research is to improve esophageal detection and to discover 

methods to reduce computational cost. The conventional method applied in the system 

uses Haar features to detect objects. The system’s issues are classified as bloodied, 

blurred, dark, occlusion, position, and invisible esophagus. The research objectives 

were formed in response to the problems’ requirements. This research is valuable in 

the image processing and object detection fields, and it has the potential to be 

implemented in similar areas to SYCUT. 

The thesis is organized as follows: 

a) Chapter 2 reviews the literature on certain topics related to the scope of this 

study. Topics such as deep learning, occluded image detection, and 

problematic image preprocessing are discussed in this chapter. 

b) Chapter 3 describes the methodology and research flow that were used 

throughout the whole study. It explains how the research was conducted, the 

information on deep learning, how the dataset was prepared, and what 

valuables were observed in the evaluation and analysis of the system. 

c) Chapter 4 presents the results and discussion based on the experiments 

conducted in the study. The analysis and findings are shown in this chapter. 

d) Chapter 5 summarizes and concludes the research, as well as discusses the 

study’s limitations and potential future work based on the findings.
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