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ABSTRACT 

Thermal perception in colder and warmer air-conditioner settings could help 
navigate cooling energy in hot and humid climates in fulfilling occupants’ comfort 
needs. The desire to be outside one’s current thermal environment could signal that the 
thermal comfort needs are not being met. The study of preferred temperature could 
reveal the link between thermal comfort and preference. Additionally, several 
contextual factors could affect thermal comfort. This study investigated comfort 
temperatures, occupants’ preferred temperature and the effect of personal and building 
characteristics on thermal comfort. A semi-controlled field study was conducted in 
nineteen office spaces yielding 628 samples from 42 occupants. Four set-point 
temperature conditions: Original, Original ±2 °C, and MS Standard, were established 
to explore thermal comfort in biased and non-biased environments. The results showed 
that the majority of the occupants felt more comfortable when the indoor air 
temperature was increased. The overall comfort temperature estimated via Griffith’s 
method was 24.6 °C, and the proportion of comfort votes depleted when the operative 
temperature reached 26 °C. The investigation of thermal preference revealed that 
occupants wanted to be in a colder environment despite already being in a comfortable 
state. The preferred temperature was approximately 23.9 ℃ using the probit method. 
Analysis via t-test and one-way analysis of variance showed that those with higher 
Body Mass Index (BMI) and above-average body surface area had significantly lower 
comfort temperature and preferred much more humid surroundings. Statistically, the 
characteristics of a building have the most impact in determining the comfort 
temperature. Larger offices with more than five-people occupancy had significantly 
lower comfort temperatures, and offices with no shading device, opened window 
blinds, and tiled flooring had higher comfort temperatures. The findings of this study 
would most benefit engineers, architects, and policymakers to chart sustainable 
building design that prioritises occupants’ comfort. 
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ABSTRAK 

Persepsi terhadap terma semasa suhu penghawa dingin di tetapan yang sejuk 
dan hangat boleh membantu pengurusan tenaga penyejukan yang digunakan dalam 
iklim panas dan lembap bagi memenuhi keperluan keselesaan penghuni. Keinginan 
seseorang untuk tidak berada dalam keadaan terma yang sedia ada menunjukkan 
keselesaan terma tidak terjangkau. Kajian berkenaan suhu pilihan boleh mendedahkan 
hubungan antara keselesaan terma dan terma pilihan. Tambahan pula, terdapat 
beberapa faktor yang bergantung kepada konteks dapat mempengaruhi keselesaan 
terma. Kajian lapangan separa terkawal telah dilakukan di sembilan belas ruang 
pejabat yang menghasilkan 628 sampel daripada 42 penghuni. Kajian ini menyiasat 
suhu keselesaan, suhu pilihan penghuni dan kesan ciri peribadi dan bangunan ke atas 
keselesaan terma. Empat keadaan suhu, Original, Original ±2 °C dan MS Standard 
telah diwujudkan untuk meneroka keselesaan terma dalam persekitaran yang berbeza. 
Keputusan menunjukkan bahawa penghuni umumnya berasa lebih selesa apabila suhu 
udara meningkat. Suhu keselesaan keseluruhan yang dianggarkan melalui kaedah 
Griffith ialah 24.6 °C, dan kadar undi selesa berkurangan apabila suhu operasi 
mencapai 26 °C. Siasatan terhadap pilihan terma mendedahkan bahawa penghuni 
mahu berada dalam persekitaran yang lebih sejuk walaupun sudah berada dalam 
keadaan selesa. Suhu pilihan adalah kira-kira 23.9 ℃ menggunakan kaedah probit. 
Analisis melalui ujian-t dan analisis varians sehala menunjukkan bahawa mereka yang 
mempunyai Indeks Jisim Tubuh (BMI) yang lebih tinggi dan kawasan permukaan 
badan melebihi purata mendapat suhu keselesaan yang jauh lebih rendah dan lebih 
suka persekitaran yang lebih lembap. Ciri-ciri bangunan memberi impak secara 
siknifikan terhadap suhu keselesaan. Pejabat yang besar dan menghuni lebih daripada 
lima orang mempunyai suhu keselesaan yang jauh lebih rendah manakala pejabat 
tanpa tirai atau tirai tingkap yang dibuka dan lantai berjubin mempunyai suhu 
keselesaan yang lebih tinggi. Penemuan kajian ini dapat memberi manfaat kepada 
jurutera, arkitek dan penggubal dasar untuk mencatat reka bentuk bangunan mampan 
yang mengutamakan keselesaan penghuni. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Research Background 

World demand for commercial air-conditioners (AC) in 2018 has a two per 

cent increase from the previous year, reaching 14.9 million units [1]. AC demand and 

energy use will likely rise further in tropical regions, considering it is the world’s 

fastest-growing region [2]. As a result, more than half of buildings’ energy 

consumption in the hot and humid tropical climate accounts for space cooling [3,4]. 

Due to modifying tropical lands, the rising surface temperature further boosts people’s 

time indoors [5]. AC systems are typically equipped with temperature selections, 

allowing for customized indoor comfort and relief from frequent hot and humid 

outdoor conditions. A Philippines study found a 0.5% to 8.5% increase in electricity 

demand with every one-degree temperature rise, equivalent to 21 (±10.4) watts per 

person [6]. Many countries have suggested temperature guidelines for mechanically 

ventilated building systems to curb energy overuse. However, attempts to save energy 

often neglect human comfort [7]. 

The indoor environment is vital for office comfort and work performance [8,9]. 

Thermal comfort significantly affects indoor environment satisfaction more than 

visual, acoustic, and air quality [10]. A comfortable thermal environment in the 

workplace can have economic benefits as health and productivity are enhanced [11]. 

On the other hand, thermal discomfort leads to negative attitudes among office 

occupants and reduced enthusiasm for work activities [12]. One thermal condition may 

not satisfy all occupants in a shared space due to individual preferences. Based on 

Fanger’s [13] studies, 5% of occupants would not be satisfied with the indoor 

environment although maximum comfort level is achieved. Thus, 80% of the majority 

votes is the threshold for an acceptable thermal environment, according to ASHRAE 
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Standard 55 by the American Society of Heating, Refrigerating, and Air-Conditioning 

Engineers [14].  

Thermal comfort was first estimated using the Predicted Mean Vote (PMV) 

indices and the Predicted Percentage of Dissatisfied (PPD). The PMV model utilizes 

the human body heat-balance concept [13]. This model was then argued to neglect 

thermal comfort's cultural and contextual influences as it is founded on a controlled 

experiment. Later, an adaptive thermal comfort model was introduced, suggesting that 

people adapt to the thermal environment via behavioural adjustments and 

acclimatization [15]. Most buildings in hot and humid climates use the Air-

Conditioning and Mechanical Ventilation (ACMV) system to control the indoor 

thermal environment [16]. The PMV model predicts everyday comfort under a steady-

state thermal environment and limited conditions such as ACMV buildings [17]. 

Meanwhile, the adaptive model factors in the outdoor parameters result in a broader 

comfort range and are commonly used to estimate thermal comfort in naturally 

ventilated spaces. Nonetheless, studies have implemented the adaptive model for 

ACMV buildings [16,18,19] to predict thermal comfort.  

This research explores thermal comfort in hot and humid climates with various 

set-point indoor temperature conditions. Additionally, it investigates the subjective 

evaluation of thermal comfort parameters and occupants’ thermal preferences. The 

findings of this study may shed light on how cooling energy is used in office buildings 

to provide thermal comfort and serve as a reference for building engineers, architects, 

and policymakers in considering occupants’ indoor comfort. 

1.2 Problem Statement 

Located close to the equator, Malaysia has a hot and humid climate year-round. 

The high daytime temperature can induce heat stress, leading to decreased productivity 

and health problems. Thermal comfort in university buildings has been extensively 

studied and compared alongside government and privately owned offices, considering 

the similar building layouts and ventilation designs [16,20–23]. In the context of 
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thermal comfort in ACMV office buildings in hotter climates, occupants may be 

inclined to use lower temperature settings. Still, underestimating cooling design value 

causes an over-cooling phenomenon in buildings resulting in an uncomfortably colder 

sensation. The uneven temperature distribution of localized AC in shared spaces may 

not satisfy the thermal comfort of occupants.  

Additionally, the thermal discomfort experienced from a too cold or too warm 

environment can adversely affect office occupants’ health and work productivity. 

Cooling energy use will be less efficient if it does not provide comfort, thus harming 

the environment and adding operation costs. Field studies on thermal comfort have 

looked into different building ventilation and adaptive relations, but there is a 

possibility of biased responses as occupants have complete authority over the 

temperature settings [16,18,24]. Consequently, the thermal awareness of temperature 

changes in field research is not sufficiently studied. Investigating thermal perception 

in existing buildings in colder and warmer conditions could be valuable in navigating 

cooling energy to address occupants’ comfort, environmental care, and operating 

costs.  

Besides the steady-state PMV/PPD thermal comfort model, international 

standards have considered the adaptive model to provide recommendations for the 

indoor environment. In Malaysia, buildings with mechanical cooling systems adopted 

the 2014 Malaysian Standard (MS) 1525 code of practice, referencing the ASHRAE 

Handbook [25]. However, there is no explicit remark that the guideline integrates local 

thermal comfort studies, which may lead to misrepresentation of indoor comfort, 

considering the cultural habit and adaption to climate conditions influences comfort 

expectations. The comfort perceptions obtained from this study may be beneficial for 

building managers and the relevant standards’ regulatory boards. 

Comfort temperature can be considered neutral temperature taken from 

ambient temperature and subjectively neutral thermal sensation. Neutral sensation 

alone may not accurately depict occupants’ comfort as it neglects occupants’ 

preference to be in a non-neutral environment. A person’s inclination to be outside the 

existing thermal environment might indicate thermal comfort is not satiated. Several 
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discrepancies have been found between preferred and comfort temperatures [26,27], 

but the studies on the relationship between thermal comfort and preference in hot and 

humid climates were limited [28,29]. Thus, investigating preferred temperature in this 

study could reveal the association between thermal preference and comfort in hot and 

humid climates.  

Other than the environment and personal elements of thermal comfort, several 

contextual factors may affect comfort level. The physical differences of the human 

body influence thermal regulation; hence the connection with thermal comfort could 

be significant. Additionally, the direct surroundings in buildings can change how 

occupants perceive their thermal environment [30]. The anthropometrics and 

demographics have shown significant effects on thermal comfort [31,32]; however, 

there are limited studies relating building designs to thermal perceptions. Therefore, 

this study hopes to present the impact of individual and buildings characteristics on 

thermal comfort for sustainable building design. 

1.3 Research Questions and Objectives 

Based on the problem mentioned earlier, this study aims to answer the 

following questions 

1) What are the comfort temperatures for occupants in Malaysian university 

office rooms when subjected to different indoor temperature conditions, 

and how does the compatibility of related local and international thermal 

environment standards compare with occupants’ thermal comfort? 

2) Do occupants prefer to be in a different thermal environment in Malaysian 

university office buildings? 

3) Do personal and building characteristics in Malaysian university office 

buildings impact thermal comfort? 
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Therefore, the objectives of this study are as follows 

1) To estimate occupants’ comfort temperatures in Malaysian university 

office rooms when subjected to multiple set-point temperatures during 

daytime working hours and compare them with local and international 

standards. 

2) To identify the preferred temperature and its relationship with comfort 

temperature. 

3) To evaluate the relationship between personal and building characteristics 

with thermal comfort.  

1.4 Research Scopes and Limitations 

This study encapsulates the understanding and evaluation of thermal comfort 

in the context of the four environment parameters: air temperature, mean radiant 

temperature, relative humidity, and air velocity. Furthermore, the two personal 

variables of metabolic rate and clothing insulation are examined via questionnaires and 

assumptions from ASHRAE Standard 55 [14]. This study investigated office buildings 

at two universities in Kuala Lumpur and Shah Alam. Selected office rooms must have 

air conditioners with interchangeable temperature settings. The postgraduate rooms 

investigated had working stations similar to office rooms but with an added connecting 

laboratory. Additionally, the occupancy duration between students and staff was 

slightly different. Specifications of air conditioning unit, room illuminance, and energy 

usage are not within the scope of this study. 
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1.5 Research Significance 

With the growing number of publications revolving around simulation-based 

thermal comfort research [33–36], field study contributes to validating the simulation 

study method before its implementation for a more practical and reliable result [37]. 

The validation also applies to climate chamber studies where subjects are placed in a 

controlled room adjusted according to the experiment’s needs. This semi-controlled 

research combines fieldwork and controlled environment study to investigate 

occupants’ thermal comfort by adjusting the indoor air temperature via AC settings in 

investigated offices. Therefore, the outcome of this study could directly benefit 

occupants’ comfort and cooling energy usage of the investigated buildings. 

1.6 Thesis Structure 

This thesis is structured in six chapters, where the summarised details are as 

follows. 

Chapter 1 explores the introduction covering the research background and 

problems within thermal comfort studies, forming research questions and objectives. 

Scopes, limitations, and significance are also introduced in this chapter, followed by 

the thesis structure and the chapter summary. 

Chapter 2 explains the literature review of this research encompassing thermal 

comfort, including the effecting factors, PMV/PPD, and the adaptive model. The 

Malaysian standard for non-residential buildings was also presented alongside relevant 

international standards. This chapter reviews past studies on indoor thermal comfort 

in hot and humid climates and shows the research gaps. 

Chapter 3 provides the research methodology starting with the geographical 

and climatology of the studied location, followed by details of investigated buildings 

and offices. Next, the field study process was explained, including the preliminary 

measurement, equipment setup, case studies and procedure for the different indoor 
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temperature conditions, questionnaire survey, and instrument verification. 

Subsequently, the estimation of thermal comfort parameters was explicated. Finally, 

this chapter presented the analytical approaches used in this study. 

Chapter 4 discusses the results obtained from the field measurement. 

Respondents’ demographics and anthropometrics were initially presented. Thermal 

environment data comprised of outdoor and indoor variables categorized into different 

case studies came next. Then, the questionnaire survey results consist of subjective 

evaluations, adaptive actions, activity level, and clothing insulations are presented.  

Chapter 5 presents the field data analysis and discusses the results. First is 

analysing comfort temperature using the regression, probit, and Griffiths’ methods. 

The comfort temperatures were then compared with local and international standards. 

Secondly, preferred temperatures were calculated, and the relationship with comfort 

temperature was explained. Lastly, the effects of personal and building characteristics 

on thermal comfort were analysed using a t-test and Analysis of Variance (ANOVA). 

Chapter 6 summarizes the findings from this research. Concluding remarks 

include comfort temperatures, local and international standards compatibility, 

preferred temperature implications, and the effects of personal and building 

characteristics. This section closes with research limitations and recommendations for 

future works. 

1.7 Chapter Summary 

This chapter offered some general background of thermal comfort study and 

then dived into the problem statements that specify tropical thermal comfort, followed 

by research questions and objectives. Next, research scopes, limitations, and 

significance were presented, and the thesis structure was written in the form of brief 

descriptions of each chapter. The next chapter reviews thermal comfort theory and 

recent related research. 
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