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ABSTRACT 

Computer malware has greatly impacted the computer network securities and even 

personal computer users. Signature-based detection is incapable to recognize the 

obfuscated computer malware since it is being covered by the obfuscation techniques. 

Therefore, machine learning is being explored and equipped in the malware detection to 

withstand the threaten of malware. In fact, there are many features available, i.e., text 

string to be implemented for malware classification. Nevertheless, opcode could be one 

of the features owing to its relative smaller data size compared to the text string. In this 

project, the significant opcodes from the executable malware files are extracted and 

several machine learning classifiers are compared in terms of classification accuracy and 

speed, as well as the comparison is done with text string-based detection and signature-

based detection. Only significant opcodes are extracted from the malware assembly code 

whereas the obfuscated malware code is used as testing dataset to observe the performance 

of classifier models. From the finding, machine learning classification using significant 

opcode is able to detect obfuscated malware with less time taken as compared to text string 

feature.  
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ABSTRAK 

 Malware telah menyebabkan kesan yang teruk bagi rangkaian securiti komputer 

dan juga komputer persendirian. Manakala, teknik pengesanan malware tradisional tidak 

dapat mengenalkan malware yang telah disamarkan dengan teknik penyamaran. Teknik 

penyamaran boleh mengubahkan kod binary tanpa menpengaruhi fungsi asal malware. 

Seterusnya, komputer malware yang berkembang dengan cepat akan menyebabkan stor 

data tandatangan malware tidak dapat menyimpan tandatangan yang terkini. Teknik 

pembelajaran mesin telah dilengkapkan bagi membantu pengesanan malware 

mengenalkan malware yang telah disamarkan. Malah, terdapat banyak ciri yang tersedia 

untuk melatih pengelas pembelajaran mesin. Rentetan teks adalah salah satu ciri biasa 

yang dilaksanakan untuk pengesanan malware. Namun begitu, kod operasi juga boleh 

menjadi salah satu penggantian rentetan teks kerana saiz datanya yang lebih kecil 

berbanding dengan rentetan teks. Kod operasi yang penting dari fail perlaksana telah 

diekstrakkan untuk melatih pengelas pembelajaran mesin. Manakala, malware yang 

disamarkan telah digunakan sebagai data pengujian untuk menguji pretasi pengelas 

pembelajaran mesin. Akhirnya, pengelas pembelajaran mesin dapat mengenalkan 

malware komputer yang disamarkan dengan kod operasi dalam masa yang lebih cepat 

berbanding dengan rentetan teks. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Introduction 

 Malware is a malicious software that could hijack the infected computer or system 

and disabling its firewall via the network connection. Based on the statistic report that 

made by Google, 70% of the malwares are discovered from the well-known websites. The 

computer could just be infected by opening the website if the website is infected by the 

malware [1]. According to the report by Accenture, the estimated financial loss that caused 

by the malware attack is around $2.6 million [2]. Based on the documented history, the 

earliest recorded malware was found in 1970s. The malware that first discovered was 

Creeper Worm which capable of self-replication and perform remote access from the 

attacker terminal. Looking back to the history of the computer, malware threat was coming 

along with the born of computer. Malware could be categories into many types which are 

virus, worm, trojan house, rootkit, spyware, adware, botnet, keylogger, ransomware and 

so on.  

 

The threats of the malware were never ended with the existence of the anti-

malware software. The malware threats have influenced and impacted not only the field 

of computer but also the field that required the computation with computer. The malware 

has evolved so that they could hide or cover themselves from being detected by the anti-

malware software. Furthermore, the computer malware is evolving constantly where the 

outdated malware signatures database would barely to include all the latest malwares. The 

obfuscated computer malware is a malware that able to change its binary code while 
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preserving the malware functionality so that it would not be detected by the anti-malware 

software. Much more advanced obfuscation techniques have been invented by the hackers 

to protect their malwares from being captured. In order to detect the malware and protect 

the computer or system being attacked by the hackers, machine learning is equipped to 

the malware detection methodology to enhance the detection ability [3].  

 

According to the study of [4], its result proven that by using machine learning 

could enhance the robustness in malware detection application. In the research [5], text 

string feature was involved to train machine learning classifier. Text string was selected 

in this research owing to its informative and small memory size. Instead of using text 

string as the features to train the machine learning classifier, other features such as byte 

code and opcode are available for this purpose. In research [6], text string is also used as 

the feature to train and test the machine learning classifier for detecting obfuscated 

malware.  

 

New malware can carry some prevalent content from the previous malware. Based 

on this hypothesis, this work is proposed where the significant opcode is referring to the 

prevalent content. In this proposal, opcode is chosen because of it relatively smaller data 

size and significant opcode is proposed to be used as the features to replace text string. 

Opcode are extracted from the assembly code, that originally from the malware executable 

files.  

 

1.2 Problem Statement 

 In [7], most of the anti-virus software vendor could have excess of 200 million 

malware signatures stored in their database and keep on growing by 2 to 3 million per 
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month. The hacker who with the skill set of anti-virus technology would be able to 

generate the malware that could escape the detection of signature-based anti-virus 

software. Signature based detection approach is incapable to recognize the obfuscated 

computer malware when the signatures that could be found in the signature database. 

Hence, the signature-based detection that highly relying on the frequent signatures update 

by the vendor could be a vulnerable to malware attack [8]. The implementation of machine 

learning on computer malware detection could be able to overcome the limitation of 

signature-based detection technique. There are several features available to train the 

machine learning classifier to recognize the malware, such as byte code, opcode, and text 

string. However, byte code and text string are relatively larger than opcode in term of data 

size [5]. Therefore, the opcode is chosen as the primary feature to obtain the information 

from it.  

 

1.3 Objectives 

1. To extract significant opcode from malware executable files.  

2. To compare machine learning classifiers which are able to detect the malware 

based on the significant opcode in term of accuracy and speed.  

3. To classify the obfuscated malware based on the best classifier chosen.  

4. To compare the result with text string-based detection and signature-based 

detection.  
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1.4 Scope of the research 

First, this research is mainly focus on the computer malware detection where the 

other types of malwares would be excluded. Next, the feature that would involve in the 

research is significant opcode neither byte code nor text string. Based on the chosen 

feature, it will be extracted from the assembly code and is used to train the classifiers. The 

best classifier in term of speed and classification accuracy would be chosen to compare 

with the classifier that trained with text string classifier. Among several common malware 

analysis techniques, static analysis is chosen as the primary analysis technique in this 

research to detect the malware. In addition, the supervised machine learning classifier with 

two classes classification is being implemented in the research.  

 

1.5 Thesis organization 

In this thesis, five chapters are organized and arranged in order and clearly as 

follow. In chapter 2, the background knowledge and literature review that related to the 

research topic will be discussed and elaborated.  Then, the research methodology will be 

clearly explained in chapter 3. Next, the result and finding of the research would be 

presented in chapter 4. At last, the conclusion of the research will be demonstrated in 

chapter 5.  
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