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ABSTRACT 

Harris Corner Detector (HCD) is one of the common algorithms used in 
computer vision to locate the corner of an image for defining features. Corners are an 
important feature in computer vision because they are invariant to illumination change, 
translation or rotation, and image noise. This feature is widely used in motion 
detection, object tracking and recognition and stitching application. There are four 
main blocks in the Harris system, mask generation in spatial derivatives block, 
Gaussian filter block to remove unwanted noises, Harris response computation, and 
follow by non-maximum suppression block, which is used to compare and determine 
the corner pixel. HCD determine the corner by calculating the eigenvalue or change in 
intensity of shifting scanning window using Taylor series expansion. The Gaussian 
filtering is computationally expensive and requires a costly multiplier–accumulator 
(MAC unit). Therefore, the speed of HCD will be highly affected or limited by the 
MAC operation. The main objective of this project is to design a high speed HCD by 
implementing Residue number system (RNS) in the Gaussian filter block. The 
performance of the RNS-based HCD will be assess, benchmark with the MATLAB 
implementation of HCD and analyse using PPA (Power Performance Area). All the 
designs are synthesized using 180nm SilTerra library with fast database in Synopsys 
Design Compiler. In a conventional binary system, a large number will have a wider 
bit width and will require a larger arithmetic unit that slows down the computation. 
RNS is a fast arithmetic algorithm that is carry-free and can support high-speed and 
parallel arithmetic operations. RNS converts the larger number into a group of smaller 
numbers and performs the same math operation using a smaller math unit to speed up 
the design. The conventional binary number representation in the MAC unit of the 
computationally intensive Gaussian blocks was replaced by an RNS-based MAC unit. 
RNS with three moduli set, {2n-1,2n,2n+1}, n=9,13 provide the appropriate dynamic 
range to cover all the possible numbers in the kernel multiplication to prevent 
overflow. The CPD of the RNS-based Gaussian filter is reduced by 38%, with almost 
the same power consumption and an additional 21% area or gate count. The maximum 
operating frequency was increased by 60%, hence providing higher throughput than 
the conventional binary Gaussian filter. The results show that RNS is a good approach 
to improve computationally intensive applications such as digital filters and 
cryptographic applications with some additional areas.     
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ABSTRAK 

Harris Corner Detector (HCD) merupakan salah satu algoritma yang digunakan 

untuk mencari sudut imej. Sudut ialah ciri penting dalam penglihatan komputer kerana 

HCD tidak berubah kepada perubahan pencahayaan, terjemahan atau putaran, dan 

hingar imej. Ciri ini digunakan secara meluas dalam pengesanan gerakan, pengesanan 

objek dan aplikasi pengecaman dan jahitan. Terdapat empat blok utama dalam HCD, 

blok terbitan spatial, blok penapis Gaussian, Harris, dan diikuti dengan blok 

penindasan bukan maksimum, yang digunakan untuk membandingkan dan 

menentukan piksel sudut. HCD menentukan sudut dengan mengira nilai eigenvalue 

atau perubahan intensiti menggunakan Taylor series expansion. Penapisan Gaussian 

adalah mahal dari segi pengiraan dan memerlukan pengganda-akumulator (MAC) 

yang mahal. Oleh itu, kelajuan HCD akan dihadkan oleh operasi MAC. Objektif utama 

projek ini adalah untuk mereka bentuk HCD berkelajuan tinggi dengan melaksanakan 

sistem nombor Residu (RNS) dalam blok penapis Gaussian. Prestasi akan dinilai, 

berbanding dengan MATLAB dan dianalisis menggunakan PPA. Semua reka bentuk 

disintesis dengan teknologi SilTerra 180nm mengunakan Synopsys Design Compiler. 

Nombor besar mempunyai lebar bit yang luas dan memerlukan unit aritmetik yang 

besar. RNS ialah algoritma aritmetik pantas yang bebas dibawa dan boleh menyokong 

operasi aritmetik berkelajuan tinggi. RNS menukar nombor besar kepada kumpulan 

nombor yang lebih kecil dan melakukan operasi matematik dengan unit matematik 

yang lebih kecil. Perwakilan nombor konvensional dalam unit MAC bagi blok 

Gaussian intensif pengiraan telah digantikan dengan unit MAC berasaskan RNS. RNS 

dengan tiga set moduli, {2n-1,2n,2n+1}, n=9,13 merangkumi semua nombor yang 

mungkin dalam pendaraban kernel. CPD bagi penapis Gaussian berasaskan RNS 

dikurangkan sebanyak 38%, dengan penggunaan kuasa yang hampir sama dan 

tambahan 21% kawasan atau kiraan pintu. Kekerapan operasi maksimum telah 

meningkat sebanyak 60%, justeru memberikan daya pemprosesan yang lebih tinggi 

daripada penapis Gaussian binari konvensional. Keputusan menunjukkan bahawa 

RNS ialah pendekatan yang baik untuk menambah baik aplikasi intensif pengiraan 

seperti penapis digital dan aplikasi kriptografi. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Introduction 

The computer vision field has been rapidly developing and has become an 

essential part of our modern life. Computer vision technology has been deployed in 

various areas such as personal gadgets, industrial, automotive, agriculture, including 

public health and medical applications. Computer vision enables computer to model 

and imitate the human visual through computer software and hardware at different 

levels by extracting and interpreting all the information from the images or videos 

during image processing stages. With all the information extraction, computer will be 

able to perform object classification and identification, including object tracking, 

panorama stitching and decision making [1], [2]. Figure 1.1 shows the image stitching 

in computer vision using corner detector. Image stitching is the process of 

concatenating multiple images of the same scene to generate a panoramic image 

without overlapping. During the stitching process, matching corner pairs are 

determined, and a similarity matrix for each corner is calculated to determine the 

positions of similar corners for image merging [2]. 

 

Figure 1.1 Image stitching using corner detection [2]. 
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Corners are one of the basic features used to describe objects during the feature 

extraction process in image processing. Edges are the area with intensity changes, 

while the corners are interesting points formed by the intersection junction of two or 

more edges in a specific area [3]. Corners are an important feature in computer vision 

because it is invariant to illumination change, translation or rotation, and image noise. 

Therefore, a corner is a good feature to retain the essential property of an object and 

effectively reduce the data processing load during image processing and pattern 

recognition [4]. 

Harris corner detector is a common and popular technique used in computer 

vision to detect corners in an image because of its high informative and good stability 

properties [5]–[7]. Compared to other corner detector algorithms, it shows good 

performance and accuracy when distinguishing edge and corner in noisy images. 

Therefore, the Harris corner detector has become a famous research technique and one 

of the best corner detection algorithms for high-speed modern computer vision systems 

such as advanced driver assistance systems (ADAS) and video surveillance 

applications [8], [9].  

The significant increasing demand for high-speed processing for real-time 

computing applications is a challenging issue in computer vision. There is always a 

tradeoff between system performance, costs, and design effort. Improving system 

performance always brings drawbacks in terms of power and area consumption. 

Therefore, a good architecture design should be able to increase the performance of 

the system with minimum cost and area increase. 

1.2 Problem Statement 

The Harris corner detector needs a Gaussian filter to smoothen the image 

before passing the input pixel of the image to the system to determine the corner. The 

Gaussian filter calculation will require a constant of kernel matrix, and the filtering 

process requires a costly MAC unit to perform arithmetic operations. A larger gaussian 

kernel provides a better smoothing effect but will require more logic and increase 
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processing time and area. In the positional number system (PNS) Harris corner 

detector, the bit size of binary arithmetic calculation in the Gaussian filter will become 

very large when using a bigger kernel size. This slows down the system because it 

requires a larger MAC unit for computation. 

(a) The processing of the Gaussian filter in the Harris Corner Detector is 

computationally expensive and requires a costly multiplier–accumulator 

(MAC unit) [10]. 

(b) A larger gaussian kernel provides a better smoothing effect but has lower speed 

and performance, larger area, and higher cost [11], [12]. 

To solve the computation issue in the Harris corner detector, a more efficient 

data representation method can be used to replace the number system in the system. 

Residue number system (RNS) is a data representation system used to represent a 

number in a collection of smaller numbers and reduce the bit width of the MAC unit 

when performing the arithmetic operation. Therefore, the computational speed will be 

improved, and the combinational logic in the MAC unit will be reduced, resulting in a 

smaller area. The RNS will be studied and implemented in the MAC module. The 

performance of the Harris corner detector will be verified at the end of the report using 

PPA (Power, Performance, and Area) analysis. 

1.3 Research Goal 

The ultimate goal of this project is to improve the computational speed of the 

Harris corner detector by implementing Residue Number System (RNS). RNS 

technique will be implemented on the reference model that uses the conventional 

position number system technique [8].  
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The objectives of the research are: 

(a) To implement Residue Number System in Harris Corner Detector. 

(b) To design a Residue Number System-based Gaussian Filter. 

(c) To assess, benchmark, and analyze the performance of the Residue Number 

System-based Harris Corner Detector 

 

1.4 Scope of Work 

The scopes of work are: 

(a) Input is 256x256 pixels greyscale Lena, Block, and House dataset. 

(b) The input to the system is 8-bits pixel intensity, and the input binary image data 

is generated using MATLAB. 

(c) RNS moduli set {2n-1,2n,2n+1}, n=9,13 will be used in the modified MAC 

unit. 

(d) Synthesis the designs using 180nm SilTerra library with fast database in 

Synopsys Design Compiler. 

(e) Compare the performance of the design in terms of maximum operating 

frequency, throughput, power consumption, gate count, energy, and area. 

(f) The RNS converters are not considered during the performance comparison 

because they are not a part of the digital filter [13], and the RNS conversion 

can be performed using software [14], [15]. 
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