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ABSTRACT 

Magnetorheological elastomer (MRE) consists of magnetic particles known as 
carbonyl iron (CIPs), which are locked in a silicone-based matrix in various 
configurations or alignments, depending on the curing process of the MRE. However, 
cXUUHQW�05(V� H[KLELW� GLIIHUHQW� SURSHUWLHV� GXH� WR� GLIIHUHQW�&,3¶V� DOLJQPHQWV� LQ� WKH�
MRE. In fact, most previous studies have focused on a specific angle of the aligned 
particles to achieve the enhanced viscoelastic properties of MRE. Thus, its effect on 
the 05(¶V�VWLIIQHVV�LV�VWLOO�UDWKHU�OLPLWHG�LQ�YDULRXV�GHYLFHV. In addition, the changes 
in directions of applied shear force could not result in maximum stiffness or MR effect 
of MRE, since the interaction of the applied force with the material is effective only in 
RQH�GLUHFWLRQ�RI�WKH�SDUWLFOH¶V�FKDLQ�DOLJQPHQW��7KHUHIRUH��LQ�WKLV�VWXG\��Dn approach 
RI� SDUWLFOH¶V� DOLJQPHQW� RI� &,3V� LQ� DQ� 05(� QDPHO\�� fountain-like structure is 
introduced to produce numerous angles of CIPs arrangement in the MRE. This study 
began with the development of a mould to produce numerous directions of magnetic 
flux lines, in order to have a fountain-like structure for the CIPs to be cured accordingly 
in the MRE during the curing process. The simulation of the fountain-like magnetic 
flux lines was done via FEMM analysis. Three types of MREs having different curing 
structures namely isotropic, fountain-like MRE, and inverted fountain-like MRE were 
fabricated. The rheological properties of these MREs in terms of storage modulus and 
magnetorheological (MR) effect were measured in an oscillatory shear mode using a 
rheometer upon input parameters of sweep strains, sweep frequency and sweep 
magnetic fields. Meanwhile, the micrograph analyses of all MRE samples were done 
via FESEM. The results revealed that both fountain-like MREs exhibited higher 
storage modulus than the isotropic MRE, about 0.06 to 0.1 MPa under the absence of 
magnetic field (off-state condition), and the values were further increased with the 
applied magnetic field (on-state condition). In particular, storage modulus of fountain-
like MRE was higher as compared to inverted fountain-like MRE. However, the MR 
effect of inverted fountain-like MRE has overridden fountain-like MRE attributed to 
its lower initial storage modulus. On the other hand, the phenomenon of higher storage 
modulus in fountain-like MRE is due to the cramped CIPs upon applied shear stress, 
thus it was stiffer to resist deformation, as compared to inverted fountain-like MRE 
which was more expanded towards the applied shear stress. The findings show that 
fountain-like MREs exhibit the utmost response in an oscillatory shear mode 
application, for both the off- and on-states conditions, which this novel approach has 
the potential to be used for the in-situ fabrication method of MRE devices. 
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ABSTRAK 

Elastomer reologi magnet (MRE) terdiri daripada partikel magnetik yang 
dikenali sebagai partikel ferum karbonil (CIP), diletakkan dalam matrik berasaskan 
silikon dalam pelbagai konfigurasi atau susunan, bergantung kepada proses 
penghasilan MRE. Walau bagaimanapun, MRE semasa menunjukkan sifat yang 
berbeza disebabkan penjajaran CIP yang berbeza dalam MRE. Malah, kebanyakan 
kajian terdahulu telah tertumpu pada sudut khusus penjajaran partikel untuk mencapai 
sifat likat anjal MRE yang dipertingkatkan. Oleh itu, kesan perubahan sifat MRE 
masih agak terhad dalam pelbagai peranti. Tambahan pula, perubahan arah daya ricih 
yang dikenakan pada MRE mungkin tidak menghasilkan kekakuan atau kesan MR 
yang maksimum pada MRE, kerana interaksi daya yang dikenakan dengan material 
tersebut hanya lebih berkesan pada satu arah penjajaran rantaian partikel. Jadi dalam 
kajian ini, satu pendekatan yang menumpukan pada pelbagai penjajaran CIP dalam 
MRE diperkenalkan, iaitu penjajaran berupa struktur seperti pancutan air untuk 
menghasilkan pelbagai sudut susunan CIP dalam MRE. Kajian ini bermula dengan 
penghasilan acuan MRE yang dapat menghasilkan garisan-garisan fluks magnet 
pelbagai arah yang bertujuan menghasilkan struktur seperti pancutan air untuk 
membolehkan CIP mengikut arah fluks magnet tersebut semasa proses pembuatan 
MRE. Simulasi garisan fluks magnet tersebut dilakukan melalui analisa FEMM. Tiga 
jenis MRE telah dihasilkan, iaitu MRE isotropik, MRE seperti pancutan air dan MRE 
seperti pancutan air songsang. Sifat reologi MRE-MRE ini dari segi modulus 
penyimpanan dan kesan magnet reologi (MR) diukur dalam mod ayunan ricih 
menggunakan reometer pada pelbagai parameter berbeza seperti  sapuan ricih, sapuan 
frekuensi dan sapuan medan magnet. Sementara itu, semua sampel MRE telah melalui 
analisa mikrograf menggunakan mikroskop elektron pengimbasan pelepasan medan 
(FESEM) untuk melihat struktur penjajaran CIP dalam MRE. Hasil kajian 
menunjukkan bahawa kedua-dua MRE seperti pancutan air mempamerkan modulus 
penyimpanan yang lebih tinggi berbanding MRE isotropik, dengan peningkatan kira-
kira 0.06 hingga 0.1 MPa tanpa pengaruh medan magnet dan nilainya telah bertambah 
dengan pengaruh daya medan magnet. Secara khususnya, modulus penyimpanan MRE 
seperti pancutan air adalah lebih tinggi berbanding dengan MRE seperti pancutan air 
songsang. Namun begitu, kesan MR pada MRE seperti pancutan air songsang telah 
mengatasi MRE seperti pancutan air disebabkan oleh modulus penyimpanan awalnya 
yang lebih rendah. Sebaliknya, fenomena modulus penyimpanan yang lebih tinggi 
bagi MRE seperti pancutan air adalah disebabkan oleh penjajaran CIP yang terhimpit 
apabila daya ricih dikenakan pada sampel tersebut menyebabkan ia menjadi lebih kaku 
untuk menahan sebarang perubahan, berbanding dengan MRE seperti pancutan air 
songsang yang lebih merenggang dengan arah daya ricih yang dikenakan pada sampel 
tersebut. Penemuan menunjukkan bahawa MRE seperti air pancut mempamerkan 
tindak balas terbaik dalam aplikasi mod ayunan ricih, sama ada tanpa atau dengan 
pengaruh medan magnet, yang mana pendekatan novel ini berpotensi untuk digunakan 
untuk kaedah pembuatan in-situ bagi peranti MRE. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Research 

Magnetorheological elastomer (MRE) is a polymer composite that consists of 

magnetically permeable particles distributed within a non-magnetic elastomeric matrix 

[1]. MRE exhibits rheological properties and offers variable stiffness, which can be 

controlled under the influence of external magnetic field. The changeable properties 

are attributed by the locked magnetic particles in the elastomer matrix that operatively 

respond to the applied magnetic field. The behaviour of fast responsiveness and 

changeability of its stiffness has rendered MRE that belongs to a group called smart 

material, particularly magnetorheological (MR) materials [2]. Possess such 

advantages, MRE has created wider application opportunities including semi-active 

vibration dampers, vibration isolators and sensors [3,4]. In the presence of magnetic 

field, changes in the viscoelastic properties of MRE are typically described by MR 

effect [2]. The effect is a behaviour that defines the changes in the storage modulus of 

MRE in response to the tuneable magnetic fields that against a set of specified strains 

[5]. MR effect of MRE is comparable depending on the composition of magnetic 

particles and matrix components, types of matrices, concentrations and sizes of 

magnetic particles, additives and types of curing process that simultaneously affect the 

resultant viscoelastic properties of MRE [6±9]. 

Two types of MRE are characterized by ways of magnetic particles disperse in 

the elastomeric matrix. The first dispersion is called as isotropic MRE, which can be 

identified by a uniform distribution of magnetic particles in an MRE. This kind of 

MRE can be prepared by curing the melt MRE in a mould without applying a magnetic 

field, thus the particles are uniformly dispersed in the cured matrix phase. Meanwhile, 

the second type of MRE is called as an anisotropic, represents by the aligned magnetic 

particles at a specific degree, in the MRE. The magnetic field that is applied during the 
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pre-structure or crosslinking process of MRE allows the particles inside the 

elastomeric matrix to align in a chain or columnar configuration, forming a chain-like 

structures according to the lines of magnetic field [5,10]. 

Generally, anisotropic MREs possess higher MR effect and wider magneto-

induced modulus compared to the isotropic MRE [5,11±14]. It is due to smaller gap 

between the inter-particles that are arranged in an aligned manner, resulting the 

magnetic fluxes flow easily along the aligned particles in the anisotropic MRE [15,16]. 

This concept gives rise to the MRE to highly respond towards the applied magnetic 

field and subsequently enhance the stiffness of the MRE. The closer gap between the 

particles also offers a higher permeability for the magnetic flux to flow within the 

elastomeric matrix of the MRE [15,17]. On the other hand, in the presence of magnetic 

field, the aligned particles in an MRE are magnetically at the lowest energy state, 

making the attraction forces between the particles are at maximum strength [5,12,18±

20]. This phenomenon in return has enhanced the capability of MRE to resist 

deformation when a shear force is applied onto it, or known as stiffness and reasonably, 

the storage modulus as well as MR effect of the anisotropic MRE increase. This 

respective behaviour has been supported by Yao et al. [6] who stated that the 

interaction forces between the magnetizable particles in the aligned structure has 

resisted more deformation when the MRE sample was magnetized and sheared. 

Furthermore, the study was also paid particular attention to the magneto-

induced modulus of the anisotropic MRE in which the corresponding behaviour was 

improved by changing the orientation angle between the particle chains, respective to 

the applied magnetic field. The result demonstrated that the highest magneto-induced 

RI�05(�ZDV�DFKLHYHG�DW�����RI�SDUWLFOHV�FKDLQ¶V�DQJOH��ZLWK�WKH�XVH�RI�ELJJHU�SDUWLFOH�

VL]HV��'HVSLWH�WKDW��IRU�WKH�VPDOOHU�VL]H�RI�WKH�SDUWLFOHV�DW�EHORZ����ȝP��WKH�PDJQHWR-

induced modulus of MRE was noted higher at 45° [6]. Another study done by 

Boczkowska et al. [11] focussed on the polyurethane-based MREs that were fabricated 

with different angles of particles chain alignments. The result reported that the samples 

with 30° of particles chain alignment to the applied magnetic field (y-axis) exhibited 

the highest storage modulus compared to samples with 0°, 45° and 90°. The finding 

also demonstrated that the magneto-induced modulus as well as the MR effect of 
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05(V� FRXOG� EH� HQKDQFHG� E\�PDQLSXODWLQJ� GLIIHUHQW� SDUWLFOH¶s chain alignments to 

some degree. The general reason of this phenomenon was related to the magnetized 

aligned particles that are normally have higher attraction and interaction magnetic 

forces between the particles could withstand greater deformation upon the applied 

shear stress. However, no detail analysis and mechanism have been carried out on the 

correlation between the aligned particles at variety of angles with the final enhanced 

properties of the MREs.  

In addition, the storage modulus as well as MR effect of MRE was also affected 

E\�WKH�GLUHFWLRQ�RI�VKHDU�IRUFH�WRZDUGV�WKH�DOLJQPHQW�RI�WKH�SDUWLFOH¶V�FKDLQ�LQVLGH�WKH�

MRE [21,22]. The works in investigating the response of MRE with respect to shear 

GLUHFWLRQ�DQG�DOLJQPHQWV�RI�SDUWLFOH¶V�FKDLQV�KDYH recently become an interesting topic 

by researchers. For instance, Tian et al. [21] who focused on the viscoelasticity 

SURSHUWLHV�RI�05(�ZLWK�����RI�LURQ�SDUWLFOH¶V�DOLJQPHQW�VWDWHG�WKDW�WKH�PRYHPHQW�RI�

the rheometer plate (shearing mode) that could stretch the particle chains or vice versa 

has affecting the resultant storage and loss moduli of the material. In fact, both storage 

and loss moduli of MRE were achieved higher when the applied shear stress direction 

has crammed the particle chains as compared to the shear direction that stretched the 

particle chains. Besides, under the applied shear stress, the particle chains that were 

crammed along the shear direction would create more restrains on the matrix phase as 

the movement of the molecular chains was hindered by a higher density of the 

particles. This finding was also consistent with another work by Zhang et al. [16], who 

stated in a theoretical model that when the average distance between the sheared 

particles decreased, the resultant shear stress as well as the storage modulus of MRE 

increased. 

Despite of many investigations to discover the most significant orientation of 

particles that results in higher performance of MRE, the inconsistency of shearing 

force that distributed in the MRE during the oscillatory shear mode should be 

highlighted as well. The homogeneity in shearing force distribution is presume to be 

an important factor to acquire maximum impact of the rheological properties of MRE, 

E\� FRQVLGHULQJ� ERWK� WKH� RULHQWDWLRQV� RI� WKH� SDUWLFOH¶V� chain and the shear force 

direction. Zhang et al. [22] have investigated the relationship between the orientation 
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of particles-chains and shear force directions in an MRE. Prior to the investigation, the 

sample was cut and repeatedly positioned in a rheometer symmetrically to ensure that 

the angle between the particles chain and shear path direction were in-line considering 

the shear path of a circular direction. This placement technique of the study highlighted 

that both parameters; particle alignments and shear force directions could be integrated 

by the oscillating plates and as a result, the MRE produced a consistency value of the 

storage modulus.  

1.2 Problem Statement 

One of the key factors to affect the performance of MRE is by manipulating 

the alignments of magnetic particles; CIPs in an MRE. The previous studies somehow 

showed the importance of having various particle-chain alignments in an MRE that 

could facing the changing directions of applied shear force in order to produce 

maximum and consistent value of storage modulus. However, most of the studies have 

been focused on the specific angle of the aligned particles to achieve the enhanced 

viscoelastic properties of MRE. ThXV��LWV�HIIHFW�RQ�WKH�05(¶V�VWLIIQHVV�LV�VWLOO�UDWKHU�

limited in various devices. Besides, in oscillatory shear mode application, the changes 

in directions of shear force could not result in maximum stiffness or MR effect of MRE 

since the interaction of the applied force with the material is advantageous only in one 

GLUHFWLRQ�RI�WKH�SDUWLFOH¶V�FKDLQ�DOLJQPHQW��7KHUHIRUH��YDULRXV�DQJOHV�RI�SDUWLFOH¶V�FKDLQ�

alignment, known as fountain-like is introduced to accommodate the changing 

direction of shearing force in order to obtain homogeneous stiffness and provide 

further enhance the resultant MR effect of MRE.  

Prior to the target, this work presents the opportunity to thoroughly investigate 

WKH�FRUUHODWLRQ�EHWZHHQ�SDUWLFOH¶V�FKDLQ�DOLJQPHQW�DQG�VKHDU�IRUFH�GLUHction towards 

the behaviour of MRE. Therefore, the study offers a fundamental knowledge in 

GHVLJQLQJ�05�GHYLFHV�HVSHFLDOO\�IRFXVLQJ�RQ�WKH�DSSURSULDWH�SDUWLFOH¶V�DOLJQPHQW�IRU�

a specific application. This approach has potentially to be applied for the in-situ 

fabrication of MRE devices where the particles will be cured and aligned following 

the direction of magnetic field during the production process of the device. In fact, 
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prior to the in-situ fabrication, the interactions between the CIPs and magnetic fluxes 

upon exact application of the device would be further strengthened. Thus, it would 

result a big impact on the performance of the device in real application, where the 

manipulation of magnetic fields will be in-line with the locked magnetic particles in 

the MRE. 

1.3 Research Objectives 

The main objective of this research is to enhance the viscoelastic properties of 

05(�YLD�PRGLILFDWLRQ�RI�PDJQHWLF�SDUWLFOH¶V�DOLJQPHQW��&,3V���7KH�SULPDU\�REMHFWLYHV�

for this research are listed as follow:  

(a) To examine the configuration of curing mould for fountain-like magnetic flux 

flow in the MRE. 

(b) To characterize the resultant structure of MREs with various alignments of 

CIPs. 

(c) To analyse the storage modulus of MREs correspond to fountain-like 

alignments of CIPs, in an oscillatory shear mode test. 

 

1.4 Research Scopes 

The scopes of this research are specified on the investigation on the rheological 

SURSHUWLHV�RI�05(V�UHVSHFWLYH�WR�WKH�DOWHUDWLRQ�RI�PDJQHWLF�SDUWLFOH¶V�DOLJQPHQW��7KH�

scopes of the research include: 

(a) The fabrication of MRE samples using silicone rubber (SR) as a matrix 

medium and magnetic particle of CIPs, with a fixed ratio of SR to CIPs is 30:70 

(wt.%).  
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(b) The application of magnetic flux density at ~0.2 T across the mould during 

curing the MRE with fountain-like CIPs. 

(c) 0RUSKRORJLFDO� FKDUDFWHUL]DWLRQ� RI� 05(� VDPSOHV� ZLWK� GLIIHUHQW� &,3¶V�

alignments, including isotopic and fountain-like CIPs of MREs for Side-1 and 

-2, using field emission scanning electron microscope (FESEM). 

(d) Carry out the rheological test for viscoelastic properties of MRE samples in 

terms of storage modulus and MR effect correspond to sweep strains 

amplitudes, sweep frequencies and sweep magnetic fields, using a rheometer.  

(e) The rheological tests of MRE samples will be done under the absence (0 T) 

and presence of magnetic fields (0.1 - 0.6 T), in an oscillatory shear mode test, 

at room temperature of 25°C. 

 

1.5 Research Outline 

There are five chapters in this thesis. Each chapter highlights the relevant 

information, accomplishments, and research findings. The following is the outline for 

each chapter: 

Chapter 1 : The thesis is introduced in the first chapter. A research background, 

motivation of research, problem statement, research objectives and 

research scopes are all covered in this section. 

Chapter 2 : The second chapter is devoted to a literature review of MRE, 

focusing on the parameters that must be considered while fabricating 

and analyzing the MRE samples. There is a review of several 

fundamental studies that were relevant to the research topics, 

including the resultant rheological properties of MRE with different 

alignments of CIPs. 

Chapter 3 : The third chapter describes the research methodology and the 

experimental component. The research process is described in detail, 

step-by-step, in order to achieve the intended objectives. This 
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chapter also includes the development process of the fountain-like 

MRE, including the design of the curing device, sample preparation, 

characterisations and rheological testing procedures. 

Chapter 4 : The results of the physical characterization and rheological 

properties of MRE samples are presented in the fourth chapter. 

Correlations between the storage modulus as well as MR effect of 

MRE towards the rheological measurements are discussed in terms 

of sweep strain input, sweep frequencies and sweep magnetic fields. 

This chapter also presents a possible mechanism that interprets the 

physical interaction of the sample during testing process that 

resulted in changeable properties of the MREs. 

Chapter 5 : This final chapter summarizes the main achievements of the 

research. The achievement of each objective and contribution of the 

research are highlighted. Finally, some recommendations are 

presented as an extension of the existing research. 
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