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ABSTRACT 

Magnetorheological (MR) foam is a magnetic polymer composite (MPC) that 

has the potential to be used for the application of soft sensors and actuators in robotics 

due to its tuneable mechanical properties and magnetostriction. Material development 

has recently become challenging since it is both time-consuming and costly. As such, 

it is crucial to model the mechanical properties and magnetostriction of MR foam to 

expedite the development of MR foam devices. As a consequence, extreme learning 

machine (ELM) and artificial neural network (ANN) machine learning models for 

predicting the magnetostriction behavior are performed. These models were developed 

to describe the non-linear relationship between different carbonyl iron particles (CIP) 

compositions and magnetic field as inputs, whereas strain and normal force as outputs. 

The model had variation hyperparameters, such as different learning algorithms and 

activation functions. For ANN, RMSProp and ADAM learning algorithms were 

applied with two different activation functions, sigmoid and ReLU. The ELM model, 

on the other hand, considered the Hard limit (HL), ReLU and sigmoid activation 

function. Then, the model was assessed for both training and testing datasets. Based 

on the results, RMSProp with activation function sigmoid of ANN model showed an 

agreeable accuracy with the experimental data compared to the other models. 

However, the correlation analysis and comparison between prediction and 

experimental data showed that ELM HL was more generalized in predicting strain and 

normal force with R2, 0.999 and root mean square error (RMSE) less than 0.002 

respectively. In conclusion, the ELM HL model successfully predicts the 

magnetostriction behavior of MR foam at various compositions that could be applied 

in the development of MR foam devices in the near future.  
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ABSTRAK 

Reologi magnet (MR) busa adalah komposit polimer magnetik (MPC) yang 

berpotensi digunakan untuk penggunaan sensor dan penggerak lembut dalam robotik 

kerana sifat mekaniknya dan magnetostriction yang dapat diselaraskan. Pembangunan 

bahan baru-baru ini menjadi cabaran kerana memakan masa dan kos yang tinggi. Oleh 

itu, adalah sangat penting untuk memodelkan sifat mekanikal dan magnetostriction 

MR busa untuk mempercepatkan pembangunan peranti MR busa. Disebabkan itu, 

mesin pembelajaran ekstrem (ELM) dan rangkaian neural buatan (ANN) model 

pembelajaran mesin untuk meramalkan tingkah laku magnetostriction dijalankan. 

Model-model ini dibangunkan untuk menerangkan hubungan tidak linear antara zarah 

besi karbonil (CIP) yang berbeza komposisi dan medan magnet sebagai input, 

sementara terikan dan daya normal sebagai output. Model ini mempunyai variasi 

hyperparameters, seperti algoritma pembelajaran dan fungsi pengaktifan yang 

berbeza. Untuk algoritma pembelajaran ANN, RMSProp dan ADAM digunakan 

dengan dua fungsi pengaktifan yang berbeza, sigmoid dan ReLU. Selain itu, model 

ELM mempertimbangkan fungsi pengaktifan had keras (HL), ReLU dan sigmoid. 

Kemudian, model itu dinilai untuk kedua-dua set data latihan dan ujian. Berdasarkan 

hasilnya, RMSProp dengan fungsi pengaktifan sigmoid model ANN mempunyai 

ketepatan yang dapat dipersetujui dengan data eksperimen berbanding model yang 

lain. Walau bagaimanapun, analisis korelasi dan perbandingan antara data ramalan dan 

eksperimen menunjukkan bahawa ELM HL lebih generalisasi dalam meramalkan 

terikan dan daya normal dengan masing-masing mendapat R2, 0.999 dan ralat root 

mean square (RMSE) yang kurang dari 0.002. Kesimpulannya, model ELM HL 

Berjaya meramalkan tingkah laku magnetostriction MR busa pada pelbagai komposisi 

yang dapat digunakan untuk penbangunan peranti MR busa dalam masa terdekat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

One of the areas in robotic research that is now making a significant 

development is using magnetostrictive materials such as Magnetic Polymer 

Composites (MPC) to accomplish the soft robotic goals in applying in the fields of 

bio-medicine, bio-mimicry, and robotic grasping, as shown in Figure 1.1 [1]. It can 

also be seen that those studies have manipulated and controlled the movement of soft 

robotics through the presence of a magnetic field using MPC. In other words, MPC 

materials can be classified as smart materials because their properties can be varied by 

external stimuli, such as their responsiveness to external magnetic inducement [2]. 

Generally, MPC is fabricated from a soft polymer matrix with magnetic particles 

embedded in it. When the magnetic field is applied, the MPC material exhibits 

mechanical deformation either by contracting or expanding the length of the material 

due to the induced magnetic particles. The deformation of the material is generally 

referred to as magnetostriction. Magnetostriction has the ability to have reversible 

exchange energy between the mechanical form and the magnetic form. This shows that 

the magnetostriction has a transduction capability that allows the material to be used 

in actuator and sensor applications [3].  
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Figure 1.1 MPC soft robotic applications: (a) Shape- programmable magnetic soft 
matter, (b) Printing ferromagnetic domains (c) Small-scale soft-bodied robot, (d) 
Magnetic soft robot, (e) Self-folded soft robotic structures and (f) Ferromagnetic soft 
continuum robots. [1]  

 

Recently, the main challenge faced by many researchers is the magnetostrictive 

materials development towards application. According to Bahiuddin et al. [4], material 

development is not only time-consuming but requires a large workforce and the cost 

of the materials. Thus, introducing a model to represent the material's properties can 

be used to speed up the development process. Furthermore, modeling may provide a 

theoretical definition of the material because models are substitute systems tested to 

gather information on their target systems, indirectly allowing them to exploit its 

capabilities and fully tailor their performance [4]. 

1.2 Motivation of study 

Several authors have proposed a model to describe MPC material 

magnetostriction. Most of the approaches relied on parametric models. For instance, 

one known MPC material is MR material, such as MR elastomer (MRE). MRE 

typically represents a two-component system of micron-sized magnetizable particles 
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embedded into a non-magnetizable polymer matrix. Due to particle-particle 

interactions on the microscopic scale, these materials can alter their macroscopic 

behavior reversibly when subjected to an external magnetic field. In terms of 

modeling, researchers have proposed mesoscopic models [5–7] to consider the 

magnetostriction effect by performing a numerical homogenization procedure. 

However, these models were suitable for a small deformation because they depended 

on the interaction of both the magneto-mechanical properties and the dimension of the 

material. In addition, Romeis et al. [8] modeled the magnetostriction effect by using 

the Hookean body under uniaxial deformation, but this model was also for a small 

deformation. In another study, Sanchez et al. [9] presented a twofold modeling strategy 

to analyse the magnetostriction behavior for MRE material with a mixture of 

magnetically soft and hard spherical microparticles. The model represented 

magnetostriction for an elementary material cell consisting of central magnetically 

hard particles surrounded by a cloud of magnetically soft particles, all mechanically 

bound by an elastic matrix. Nevertheless, these parametric models need to consider the 

microstructure of the material and their primary purpose is to classify different detailed 

information when designing devices [10]. Thus, applying these models might involve 

a complicated mathematical derivation that may inhibit incorrect identification of 

parameters that affect model efficiency [11]. Although these parametric models can 

accommodate the relationship between the applied magnetic field and strain, Sorokin 

et al. [12] found another important parameter, particularly normal force, because the 

normal force is directly related to magnetostriction. The reason is that normal force 

increases based on the applied magnetic field, which attempt the material to elongate 

itself in a homogenous magnetic field [13]. In addition, Liao et al. [14] stated that when 

a normal force was coupled with the magnetostrictive process, it could be highly 

effective in developing actuators and sensors. 

On the other hand, machine learning has several advantages over parametric 

models in which the input-output relationship can be non-linear without parameter 

identification. Machine learning is considered artificial intelligence incorporating 

previous data experience to extrapolate future performances [15]. Implementing 

machine learning techniques can reduce the workload and accelerate discoveries in 

computational or experimental studies [16]. Besides that, machine learning has not 

only been shown to be an effective approach for learning and predicting the material 
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properties of experimental data [17], but it is also frequently employed in studying MR 

materials [18]. Most of the machine learning techniques that are widely utilized are 

Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) because of 

the model capabilities. ANN can control many variables for which the analytical 

models would be complicated to create. ANN provide a straightforward way to assess 

potential outcomes on a complicated problem and a compact approach to handling vast 

volumes of data [19]. Meanwhile, ELM advantages include improved scalability, good 

generalization performance for regression and classification, a more excellent 

approximation of any target continuous function, reduced computational complexity, 

and faster learning speed [20], [21]. In general, machine learning models have been 

implemented in MPC materials especially MRE, such as Zhao et al. [22] employed an 

ANN to forecast the dynamic properties of the MRE isolator and Saharuddin et al. [23] 

used an ELM to predict viscoelastic properties. As a result, both models gained a 

higher accuracy. 

Recently, a new material, known as magnetorheological (MR) foam, has been 

introduced into MPC material. MR foam is made up of micron-sized magnetically 

permeable particles, such as carbonyl iron particles (CIP), which manifest themselves 

in the porous absorbent foam matrix during the foaming process [24]–[26]. The 

magnetostriction behavior of MR foam is controllable and reversible by altering the 

external magnetic field [27]. Because of its low density, soft matter, and tunable 

properties [28]–[30], this material has great promise for application in soft sensors and 

actuators for soft robotics. 

1.3 Problem Statement 

The MR magnetostriction models are crucial in the advancement of nonlinear 

materials, particularly in terms of device application. Although existing studies had 

proposed the magnetostriction model for MRE, most models have challenges in 

predicting the magnetostriction behavior, such as dependency on the microstructure of 

the materials, the use of complex mathematical derivation, and limited to a single 

prediction at a time. Recently, machine learning has not only been shown to be a 
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practical approach for learning and predicting the material properties of experimental 

data, but it is also frequently employed in the study of MR materials, yet research 

related to magnetostriction has not been reported. Since MR foam is a potential 

candidate for soft robotic applications, the magnetostriction model of MR foam for 

various range predictions has to be undertaken to gain a fundamental understanding of 

the materials. In addition, strain and normal force are important in developing the 

actuators and sensors, especially when they depend on the magnetic particle's 

concentration and magnetic field intensity. 

1.4 Research Objectives 

The main objective of the research is to propose a new magnetostriction model 

of MR foam using machine learning. In order to achieve this goal, several objectives 

of the research have been identified: 

(a) To develop a modeling platform of MR foam magnetostriction using 

ANN and ELM.  

(b) To analyse the correlation between the dataset of different machine 

learning hyperparameters of ANN and ELM. 

(c) To evaluate the prediction model accuracy of ANN and ELM by 

comparing with experimental data.  

                 

1.5 Research Scope 

This research develops a new platform to predict the MR foam 

magnetostriction behavior using machine learning. The scope of this study includes: 
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(a) Fabrication of MR foam with five different compositions varying in 

weight of CIP, which are 35%, 45%, 55%, 65% and 75%.  

(b) Magnetostriction and normal force of MR foam was obtained by using 

a rheometer under oscillatory mode. 

(c) The magnetostriction model was developed using neural networks, 

particularly ANN and ELM, with different hyperparameters based on 

various inputs covering magnetic fields and CIP composition. 

Meanwhile, the output for the magnetostriction behavior is strain and 

normal force. The ANN model utilized RMSProp and the ADAM 

learning algorithm, each using sigmoid and ReLU activation functions. 

Meanwhile, ELM utilized sigmoid, ReLU and Hard limit (HL) 

activation functions. 

 

1.6 Outlines of thesis 

This thesis consists of five chapters and the main contents of each chapter are 

given below: 

Chapter 1 provides a brief introduction to the background of the research followed by 

the motivation and the problem statement that clearly identifies the research gap, 

research objectives, and research scope. 

Chapter 2 reviews the literature on MPC magnetostriction modeling and the recent 

issues of machine learning techniques in different fields. The review begins with a 

brief introduction to magnetostriction behavior and then focuses on MPC material, 

modeling, and machine learning methods in different fields. Research gaps have been 

identified due to assessing several fundamental studies on the research topics.  
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Chapter 3 describes the materials fabrication processes used to develop MR Foam. 

Furthermore, this chapter also describes the methodology for the proposed machine 

learning platform development to predict the MR Foam magnetostriction behavior and 

related experimental works. 

Chapter 4 presents the results and discussion on the machine learning models for MR 

foam magnetostriction behavior prediction. The machine learning models were 

assessed and compared for the hyperparameter utilized statistical analysis. 

Chapter 5 summarizes all previous chapters, concluding remarks, and key 

accomplishments related to the research objectives. This chapter also suggests future 

works as an extension of the existing research.
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