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ABSTRACT 

Motor imagery on electroencephalogram (EEG) signals is widely used in brain-
computer interface (BCI) systems with many exciting applications. There are three 
major types of filtering for EEG signals- temporal, spectral, and spatial filtering. Spatial 
filtering using Common Spatial Pattern (CSP) is an established method of processing 
EEG signals as classifier inputs. With the recent advent of deep learning, many deep 
learning classifiers have been adopted, including Recurrent Neural Network (RNN) 
and Convolutional Neural Networks (CNNs). In the early adoption of CNN to solve 
BCI based on EEG, the raw EEG signal is fed to CNN for classification. However, in 
the recent trend, various representations of CNN exist for BCI EEG classification, 
either spatial or temporal only, or a combination of both, or other similar features to 
enhance the signal further. Also, there exist multiple implementations of attention 
networks for BCI EEG classification. However, most of the existing work does not 
utilize a good filter and spatial or temporal representation by using attention networks. 
This study develops a framework using CSP and Short-Time Fourier Transform 
(STFT) as well as Attention Convolutional Neural Network (CSP-STFT-attCNN) for 
EEG BCI classification. The features from CSP are translated into the spatial domain 
using STFT as input to attention-based CNN as the classifier. The first step is to 
preprocess the raw EEG signals, perform channel selection, separate them into train 
and test data, and apply CSP-STFT. Then, the model architecture to train with the data 
is defined. This framework uses attention-based CNNs to classify the collected spatial 
images across different test subjects. Finally, the performance of the CSP-STFT-
attCNN has been validated on two BCI benchmark datasets 1) Competition III dataset 
IVa 2) Competition IV dataset I. The proposed CSP-STFT-attCNN has proved that the 
framework based on CSP-STFT as feature extractor and Attention-CNNs offers a 
promising result; the classifier achieved better performance in terms of classification 
accuracy, averaging 80% across all five subjects for Competition III dataset IVa. The 
precision and recall are excellent too, ranging around 0.8-0.9. Nonetheless CSP-STFT-
attCNN did not perform as well with the other dataset, hence the reasons are explored 
further. In general, the proposed CSP-STFT-attCNN can offer richer joint 
spatiotemporal features as inputs to classifiers, whereas using an Attention-CNN 
classifier improves upon the earlier problems suffered by CNNs.  
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ABSTRAK 

Pengimejan motor pada isyarat elektroencephalograf (EEG) telahpun 

digunakan secara meluas dalam sistem Brain Computer Interfaces (BCI) dengan 

banyak aplikasi yang menarik. Terdapat tiga jenis teknik penapisan untuk isyarat EEG- 

tapisan secara temporal, spektrum dan spatial. Penapisan spatial menggunakan Corak 

Spatial Biasa (CSP) ialah kaedah yang sering digunakan untuk memproses isyarat 

EEG sebagai sumber kepada model pengelasan untuk dikelaskan mengikut label yang 

betul. Dengan kemunculan teknik deep learning, banyak model pengelasan jenis deep 

learning telah diterima pakai, termasuk rangkaian neural berulang (RNN) dan 

rangkaian neural berlingkar (CNN). Ketika kajian menggunakan CNN untuk aktiviti 

BCI berdasarkan EEG masih baru, kebiasaan yang diguna pakai ialah untuk 

menyalurkan isyarat EEG secara terus kepada CNN. Pada masa kini, pelbagai bentuk 

pemprosesan isyarat kepada CNN telah diwujudkan untuk tujuan pengelasan BCI 

EEG, tidak mengira jenis spatial, temporal mahupun penggabungan kedua-duanya 

atau lebih. Di samping itu, terdapat juga pelbagai kajian yang menggunakan rangkaian 

jenis perhatian untuk pengelasan BCI EEG. Namun begitu, kebanyakan kajian sedia 

ada tidak menggunakan penapis isyarat yang baik. Kajian ini membangunkan CNN 

bersama mekanisma perhatian dan digabungkan dengan algoritma CSP-STFT (CSP-

STFT-attCNN) untuk klasifikasi EEG BCI. Isyarat EEG ditapis, pemilihan saluran 

isyarat penting akan dilakukan sebelum memisahkan data kepada dua bahagian untuk 

proses melatih dan menguji, dan mengaplikasikan CSP-STFT. Ciri-ciri penting 

daripada CSP diterjemahkan ke dalam bentuk gabungan spatial dan temporal 

menggunakan Short-Time Fourier Transform (STFT) sebelum disalurkan kepada 

CNN berasaskan mekanisma perhatian. Kemudian, model pengelasan tersebut akan 

dilatih untuk mengelaskan imej spectrum. Akhir sekali, prestasi CSP-STFT-attCNN 

disahkan semula pada dua set data penanda aras BCI 1) Pertandingan III set data IVa 

2) Pertandingan IV set data I. Cadangan CSP-STFT-attCNN menawarkan hasil yang 

memberangsangkan dengan purata ketepatan 80% untuk salah satu set data. Secara 

umum, CSP-STFT-attCNN yang dicadangkan menawarkan ciri berkembar yang lebih 

kaya sebagai sumber kepada model pengelas gabungan mekanisma perhatian dan 

CNN yang menambah baik masalah terdahulu yang dialami oleh CNN. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Problem Background 

The BCI, in general, is a non-invasive computing system capable of 

communicating with the brain, limited only to the signals directly coming from the 

central nervous system instead of the ones transmitted into the periphery of nerves and 

muscles. Moreover, it also analyses and transforms the brain signals into interpretable 

commands that can be further relayed to an actuator or output device in order to carry 

out a specified action precisely. By and large, a BCI system comprises of four major 

components, namely the signal acquisition device, feature extraction, feature 

translation and actuator.  

The brain signals are first acquired from the electrodes that are firmly hooked 

to their predetermined positions on a subject’s scalp. An EEG device that is connected 

to these electrodes would then be utilized to record the electrical activity by measuring 

the voltage fluctuations, which is the product of ionic current found within the brain 

neurons. This signal acquisition undertaking would go on for a period of time, usually 

over a few trials to ensure consistency and to obtain the representative activity of the 

brain. EEG signals extracted can be derivatively extracted into event-related potential 

(ERP) or evoked potential (EP). EP is particularly an electrical potential recorded from 

a specific region of the central nervous system in response to an external stimuli such 

as light or touch.  

On the other hand, ERP focuses on rhythmic brain response as a consequence 

of a distinct sensory, cognitive or motor event. EEG has been the go-to method in 

medical field as a diagnostic test for epilepsy, brain tumour, stroke and sleep disorders 

among others. It has also been prominently used in researches involving many 

branches of subjects concerning the central nervous system and cognitive abilities such 
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as neuroscience, cognitive science, cognitive psychology, neurolinguistics, 

neuropsychology and many more. By amalgamation of behaviour and ERPs measures, 

(Fu et al., 2019) managed to investigate the effect of price deception on consumers’ 

purchase decision. Another study used ERP data to compare performances of younger 

and older adults in multiple identity tracking tasks (Pehlivanoglu, Duarte, & 

Verhaeghen, 2020). In a similar fashion, ERP data are collected from patients 

struggling with depression against a control group during source memory retrieval 

activity (Barrick & Dillon, 2018).   

The motor imagery signals, having been widely used in BCI systems as part of 

neuroimaging and rehabilitation, are considered under the ERP derivative of EEG. In 

the motor imagery paradigm, by having the user to imagine the execution of a specific 

movement with a designated limb, the command is encoded by altering the rhythmic 

activity in locations concerning the sensorimotor cortex that would typically 

correspond to this limb (Lotze & Halsband, 2006). After recording the signal, the BCI 

system would proceed to decode the intended command correctly. Nonetheless a 

significant problem in EEG-based BCI systems is the limited quality and resolution of 

the signal due to volume conduction effects, a low signal-to-noise ratio, and the non-

stationary nature of EEG (Samek, Vidaurre, Müller, & Kawanabe, 2012). In order to 

improve the quality and get a better motor imagery signal, the noise and artefact signals 

should be eliminated through filtering process. For the EEG signals, there are a 

multitude of methods for filtering them such as temporal, spectral, and spatial filtering. 

In comparison to temporal and spectral filtering, it has been established that 

spatial filtering can produce a better representation of the signal (Burle et al., 2015). 

Spatial filtering is a type of filtering that combines the EEG signal coming in from 

multiple electrodes to improve the signal-to-noise ratio compared to simply taking in 

the EEG signal from signal electrodes. The recorded signal at one particular electrode 

does not only reflect neural voltage fluctuations underneath the electrode, but also 

captures the distance between current sources through volume conduction effects. 

Spatial filters are useful for discriminating different classes of EEG signals such as 

those corresponding to motor activities (Yong, Ward, & Birch, 2008b). It is undeniable 

that spatial filtering for EEG feature extraction and classification is an important tool 
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in the brain–computer interface. Diving in further, the most widely used spatial 

filtering method in motor imagery for BCI applications is the common spatial pattern 

(Jamaloo & Mikaili, 2015; Samek, Kawanabe, & Muller, 2014).  

Common spatial pattern (CSP) algorithm is commonly used in processing 

motor imagery EEG signals because it can differentiate the mental states induced by 

motor imagery (Samek et al., 2014). However, in the CSP algorithm, the estimation of 

the covariance matrix for the two classes may not represent the true representation of 

each sensor node from EEG, so the estimation may create a spurious relationship 

between EEG sensor nodes. Therefore, many strategies have been proposed to improve 

CSP performance (Samek et al., 2014).  In addition to that, there are also many 

modifications to the original CSP such as analytical CSP. Some studies propose 

combining CSP with other transform methods to further boost the signal representation 

such as using Short-Time Fourier Transform to obtain the joint time-frequency 

features and rendering them as two-dimensional spectral images.  

With the emergence of deep learning, many studies have employed different 

deep learning models in many applications and achieved high performance. For 

instance, convolutional neural networks (CNNs) are instrumental in extracting local 

and spatial features and patterns directly from raw data such as images (Altaheri et al., 

2019), videos (Al-Hammadi, Muhammad, Abdul, Alsulaiman, & Hossain, 2020), and 

speech (Hossain & Muhammad, 2018). Recurrent neural networks (RNNs) can extract 

temporal features and patterns from time-series data, making them useful in video and 

speech applications (Bae, Choi, & Kim, 2016; Nguyen & Pernkopf, 2018). 

Transformers, which are gaining more traction recently, can process sequential data 

without handling them in recursion, which is fantastic for applications such as machine 

translation. Inspired by the high performance of deep learning techniques in various 

areas, several authors utilized deep learning methods to classify EEG signals such as 

CNNs (Amin, Alsulaiman, Muhammad, Mekhtiche, & Shamim Hossain, 2019; Amin, 

Muhammad, Abdul, Bencherif, & Alsulaiman, 2020), RNNs (Ma, Qiu, Du, Xing, & 

He, 2018; Rashid et al., 2020), and deep belief networks (DBN) (Cheng et al., 2020). 

However, there is still more work to ensure that the performance of current deep 
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learning techniques applied to EEG MI classification is comparable to other fields like 

image and speech recognition.  

1.2 Problem Statement   

Finding a good motor imagery EEG signal is quite challenging. One of the 

prominent methods to identify motor imagery features is to use the CSP algorithm. 

Nevertheless, the CSP algorithm on its own is very sensitive to outliers or noise that is 

introduced from external sources, which would degrade the processed signals (Yong, 

Ward, & Birch, 2008a). Consequently, using the CSP algorithm has its own difficulties 

when estimating the class of covariance matrices, which may be negatively influenced 

by EEG-measurement artefacts such as subject movements or loose electrodes, such 

that CSP assumes all channels to be related to one another even when only noise 

relationships are evident. Although CSP has been extended into various forms, the 

main disadvantage of CSP is the assumption that noisy channels are active. These 

active channels may introduce a spurious relationship between channels when CSP 

estimates the covariance matrix.  

 On the other hand, another way to process the EEG signals is to take the time and 

frequency features only. This has been proven to work with techniques such as Fourier 

Transform and Wavelet Transform. However, while these methods work just fine in 

achieving their objectives, using them alone will not improve the BCI system in 

overall.    

CNNs have convolutional layers that can extract specific features from the 

image, outperforming the basic neural networks. This is why CNNs have mainly been 

utilized for image classification. Nonetheless, while CNNs are being introduced in 

motor imagery classification, CNNs suffer from the loss of salient features during 

training, causing the spatial invariant problem that affects the performance. In addition 

to that, CNNs are much slower as the application of the convolutional layers can only 

focus on one distinctive feature at a time. Attention mechanism has been able to mimic 

brain cognitive process and is majorly used for machine translation, beginning to phase 
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RNN and LSTM out of the way in many natural language applications. Recently 

attention has also been used extensively in computer vision. It is discovered that 

attention can learn just as well if not even better than CNNs when extracting features 

from images to perform classification. 

In summary, there are various approaches to improve the overall BCI system 

utilizing CSP algorithms on the extraction part such as integration with STFT and 

classifier with attention mechanism applied together with CNNs to boost the 

classification. It is important to determine the right combination of CSP and STFT and 

process it as inputs to Attention-CNNs, as well as tuning the Attention-CNNs so that 

it will be able to take in the features and classify them well. However, an improper 

feature extraction process could further reduce the quality of the image representation 

and eliminate important information from the EEG signal. Besides, the wrong 

arrangement and definition in the model building stage will also hinder the model from 

learning better. 

1.3 Research Objective 

The objective of this study is to introduce a novel combination of motor 

imagery BCI systems that combines CSP, STFT, and deep learning algorithms 

altogether. The specific objectives of this study are outlined below:  

  

i) To develop a combination method of CSP and STFT to enhance the existing 

CSP algorithm.   

ii) To develop the attention-based CNNs for BCI motor imagery classification on 

i) 

iii) To validate the proposed method on the existing benchmark dataset: Dataset 

IVa BCI Competition III and Dataset I BCI Competition IV. 
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1.4 Research Scope and Limitation 

The scope and limitation of this research are listed below:  

i) This research uses two-class motor imageries only as the benchmark data,  

namely the BCI competition III dataset IVa and the BCI competition IV dataset I.  

ii) The proposed improvement was only validated with the existing CSP 

algorithm.  

iii) The proposed system or methodology was tested in a simulated set-up using 

Python virtual environment meant for development and was not done in real-time.  

1.5 Thesis Contribution 

The contributions of this research are as follows:   

i) An introduction of STFT to complement CSP as a feature extraction process 

for EEG signals to obtain better motor imagery rendering.  

ii) Proposed CNNs with Attention mechanism to combat the spatial invariance 

problem suffered by CNNs in dealing with 2D imagery.  

iii) The application of a novel methodology for BCI system, namely the integrated 

CSP-STFT with Attention-CNN classifier scheme. The proposed scheme is configured 

to run end-to-end with the CSP-STFT adjusted to obtain better signal representation 

and the Attention-CNN model adjusted to maximise the learning of the motor imagery. 

1.6 Thesis Outline 

This thesis is organized into five chapters. Typically the first chapter will 

discuss on problem background, present the problem statement, project scope and 

expected contribution as an outcome of the study. 
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In Chapter 2, a literature review on BCI, EEG signals, the CSP algorithm, the 

STFT algorithm, classifier methods, CNNs and attention mechanisms methods for the 

EEG motor imagery signal is presented. All points are to be reviewed with the related 

theory to this study being highlighted.   

In Chapter 3, the proposed methodology is presented. In this chapter, the 

dataset used is elaborated on. In addition to that, a brief outline of the proposed BCI 

system, the dataset, pre-processing, feature extraction, classification, and performance 

evaluation is discussed.  

In Chapter 4, the results and discussion are presented, focusing on the results 

of experimental research on comparative performance analysis and evaluation. This 

chapter presents an evaluation of the test to assess system performance. The novel BCI 

system is compared and evaluated using three parameter tests, i.e., accuracy, precision 

and recall, with the results outlined at the end of this chapter.  

 

In Chapter 5, the conclusions of the study and future works are discussed 

including the recommendations, improvements, and/or validations for possible future 

works.
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