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ABSTRACT 

An automated tropical wood recognition system has been developed by 

Centre for Artificial Intelligence & Robotics (CAIRO), Universiti Teknologi 

Malaysia (UTM) based on machine vision to emulate the experts known as 

KenalKayu. The system used Statistical Properties of Pores Distribution (SPPD) 

feature extractor and K-Nearest Neighbor (KNN) classifier which have been proven 

to increase the system‟s accuracy. Unfortunately, when more wood species were 

added to the system‟s database, it reduces the accuracy of the system. Therefore, 

providing additional features that are representation of each species is one way to 

improve this issue. As the wood surface pattern is not only defined by pores but lines 

as well, this thesis presents additional new feature extraction method based on 

Statistical Properties of Line Distribution (SPLD) to capture the discriminant line 

features of each species and K-Nearest Neighbor (KNN) is used as classifier. The 

results of experiments showed that when used by itself as a feature extractor, the 

SPLD managed to achieve 88% accuracy, and the accuracy increased to 99.5% when 

combined with SPPD features and 100% accuracy was achieved when SPPD and 

Basic Grey Level Aura Matrix (BGLAM) features were used in combination. In 

conclusion, the SPLD method is an essential customized feature extractor and could 

be used as an alternative to adequately identify wood species. Hence, in the future, 

other discriminant features can also be added for wood identification purposes.  
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ABSTRAK 

Sistem pengecaman kayu tropika automatik telah dibangunkan oleh Pusat 

Kecerdasan Buatan & Robotik (CAIRO), Universiti Teknologi Malaysia (UTM) 

berdasarkan visi mesin untuk mencontohi pakar yang dikenali sebagai KenalKayu. 

Sistem ini menggunakan pengekstrak ciri Sifat Statistik Taburan Liang (SPPD) dan 

pengelas Kejiranan Terdekat-K (KNN) yang telah terbukti meningkatkan ketepatan 

sistem. Malangnya, apabila lebih banyak spesies kayu ditambahkan pada pangkalan 

data sistem, ia mengurangkan ketepatan sistem. Oleh itu, menyediakan ciri tambahan 

yang mewakili setiap spesies adalah satu cara untuk memperbaiki isu ini. 

Memandangkan corak permukaan kayu bukan sahaja ditakrifkan oleh liang tetapi 

garisan juga, tesis ini membentangkan kaedah pengekstrakan ciri baharu tambahan 

berdasarkan Sifat Statistik Taburan Garis (SPLD) untuk mengenal pasti ciri garis 

diskriminasi setiap spesies dan Kejiranan Terdekat-K (KNN) digunakan sebagai 

pengelas. Keputusan eksperimen menunjukkan bahawa jika ianya digunakan dengan 

sendiri sebagai pengekstrak ciri, SPLD berjaya mencapai ketepatan 88%, dan 

ketepatan tersebut meningkat kepada 99.5% apabila digabungkan dengan ciri SPPD 

manakala ketepatan 100% dicapai apabila SPPD dan Matrik Aura Aras Kelabu Asas 

(BGLAM) digunakan secara gabungan. Kesimpulannya, kaedah SPLD adalah 

pengekstrak ciri khas yang penting dan boleh digunakan sebagai alternatif untuk 

mengenal pasti spesies kayu. Oleh itu, pada masa hadapan, ciri-ciri diskriminasi lain 

juga boleh ditambah untuk tujuan pengecaman kayu. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1  Problem Background 

For a long time, tropical rainforests have been regarded as one of the world's 

most productive forest. In this world, the tropical rainforests can only be found in 

South America, Central Africa and Southeast Asia. Malaysia is located in South East 

Asia and a home to over 2,650 tree species, with natural forest occupying more than 

55.3 percent of its land area. According to Malaysia Timber Industry Board (MTIB), 

since June 2019, Malaysia has 4.34 million hectares of certified forests endorsed by 

the Program for the Endorsement of Forest Certification scheme to fulfill the demand 

for certified timber products [1]. Malaysia forests provide a large variety of useful 

materials, ranging from medicinal plants and food to fiber and timber [2].   

Furthermore, Malaysia is one of the world's top tropical timber producers and 

top 10 furniture producers. The timber industry is an important contributor to the 

Malaysian economy. In 2019, Malaysia earned RM 22.5 billion from timber exports 

[3]. In fact, Malaysian timber currently shipped to more than 162 countries, with 

India being the major importer. However, deforestation is a critical threat as the 

country is still developing. Some timber traders tend to mix different types of wood 

and even try to export an endangered wood species to increase their profit margin. 

Nevertheless, the remaining forests face challenges from unsustainable logging, 

illegal removal of forest resources and encroachment [4]. Various measures have 

been proposed to combat this problem including wood identification by wood experts 

at various checkpoints.  

It is easy to identify a tree by observing its flowers, fruits and leaves. 

However, once the tree is cut down and become wooden logs, it becomes very 

difficult to identify the tree species and the expert must rely on their physical 
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characteristics for species identification. Wood species has different appearances 

such as shapes, smells, odor and colors of the leaves. These characteristics are called 

macroscopic features and can be used to indicate whether a wood is labeled 

correctly, or to which species it is likely to belong to. Recent wood can often be 

identified by macroscopic characteristics, particularly by color, gloss, odor, weight 

and structure. As such characteristics are generally modified or destroyed in fossil, 

historic or carbonized wood, only a few species or species groups of the indigenous 

flora can be identified with the naked eye or only with the aid of a magnifier (5 to 

20x). Macroscopic keys typically have fewer features than microscopic keys. Several 

species have identical macroscopic features and therefore, for identification, it is 

more reliable to use microscopic characters instead of macroscopic features [5].  

The microscopic features on wood cross sectional surfaces are useful for 

identification and determining the wood species because different kind of wood 

species will have a distinctive microscopic feature. Macroscopic features are usually 

generic whereas microscopic features necessitate a more thorough anatomical 

inspection with the aid of IAWA List of Microscopic Features for Hardwood 

Identification [5]. The anatomical features in this list composed of growth rings, 

porosity, vessel arrangement, vessel groupings, outline of solitary vessels, 

perforation plate type, intervessel pit arrangement and size, type of fiber wall pitting, 

fiber wall thickness and length, axial parenchyma distribution, ray width, aggregate 

rays, cellular composition of rays, storied structure, intercellular canals and their 

cellular location. 

The wood detection and classification process are currently performed 

manually by wood experts with handheld lens or unaided eye [6]. A dichotomous 

key [7] is provided as a guideline for the experts to determine the wood species. 

However, the conventional technique in performing wood identification can lead to 

difficulties in using keys due to errors in recognizing feature. In addition, lack of 

background or training in wood identification can lead to a feature being 

misinterpreted. Apart from that, a feature may also be interpreted differently from the 

way a key constructor intended. Fault in recognizing a feature is likely to be a cause 

of misidentification of the wood species.  
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Wood recognition is mainly done by well-trained wood experts. Regrettably, 

it takes a long period of time to train a wood expert which is qualified to identify 

wood species with high accuracy because there are more than 3000 wood species in 

Malaysia. The process of examining every unit of wood by a human inspector can be 

tedious and time consuming. There will also be a problem in identifying the timber 

accurately especially the lesser-known species. Wood experts are not abundant in the 

market today to meet the demand in the industry which involves in raw wood 

identification.  

Therefore, it may not be feasible if the customs need to check and identify the 

species of wood before they are exported out of the country.  Manufacturers can also 

use the technique to check and verify whether the wood materials acquired are from 

the correct species, as different type of wood species will have different value, 

verification of the species is important to avoid unnecessary loss for the 

manufacturers. In view of these factors, a systematic method is essential so that the 

identification of wood species can be carried out quickly and accurately. 

To mitigate this problem, an automated visual inspection may help users to 

recognize wood species in just an instant. It has been implemented to a variety of 

applications and has been used for century to replace humans with intelligent 

machines in different industries. Centre for Artificial Intelligence and Robotics 

(CAIRO), Universiti Teknologi Malaysia (UTM) in particular Khalid et al. [8] had 

developed a tropical wood recognition system based on wood macroscopic anatomy 

called KenalKayu. The research has been done since 2002 and it has been improved 

in so many ways just to ensure the system is able to recognize the wood species. This 

system may replace the conventional technique in performing wood identification 

which is exposed to human error and biasedness. 
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1.2 Problem Statement 

The main problem in wood recognition system is the lack of discriminative 

features of the texture image and also very discriminative features among inter class 

species [9] as well as noises due to illuminations, or uncontrolled environment. Some 

of the wood species have similar pattern with other and some have different pattern 

even though they are from the same species. So, there is a need on how to develop 

more accurate algorithm for wood species recognition based on texture analysis. 

Usually, the wood experts do this process manually and they used dichotomous key 

[10] which is the traditional way to classify the wood species by looking at the tree 

barks and the pattern of the wood cross-section.  The wood features such as the size 

of pores, the density of pores, etc. depends very much on the age, weather and other 

factors, contributing to the irregularities of the features. Due to these factors, 

classification of the wood species remains a challenging task. 

Many studies have been done in area of wood recognition system. 

Researchers like [8], [9], [11]–[14] had been working on automated tropical wood 

recognition to improve the system. The work includes the use of grey level co-

occurrence matrix (GLCM) technique for extracting the texture features of the wood 

species and using back propagation neural network (BPNN) for classification. Yusof 

et al. [15] adopted fusion of two feature sets using multi feature extractor technique. 

Two feature extraction methods were used in this system is grey level co-occurrence 

matrix approach (GLCM) and Gabor filters. Khalid et al. [16] has developed a pre-

classification stage to solve the problem of nonlinearity of tropical wood species 

separation boundaries using K-Means Clustering and Kernel Discriminant Analysis 

(KDA).  

In later development, Khairuddin et al. [12] introduced Genetic Algorithm 

(GA) as feature selection to improve the accuracy of wood species recognition, in 

particular to reduce the redundant features which are not considered as 

discriminatory enough for accurate classification. Their work showcased an 

improved automated tropical wood recognition system that can perform accurate 

wood identification for 70 wood databases in an offline mode. Unfortunately, when 



 

5 

more woods were added in the database, or when the testing was done online with 

new wood images, the accuracy of the system drops. 

It is worth taking a step back and looks at how experts identify the wood in 

manual ways using the dichotomous keys. As features of wood rely heavily on pores 

characteristics, Khairuddin et al. [12] proposed a new feature extraction method 

specifically for tropical wood called the Statistical Properties of Pores Distribution 

(SPPD). The feature extraction mimics manual procedure of tropical wood species 

recognition which is observing the pores characteristics such as size and density of 

pores. The SPPD feature extractors managed to increase the system‟s accuracy.  

However, the SPPD method ignores another very important wood 

microscopic feature that are used by experts in the dichotomous key, the line 

characteristics. As we know, the most prevailing features that were usually used by 

experts to examine wood species are by looking at lines thickness, lines length and 

whether the lines are continuous or cut into several short lines, parenchyma lines or 

ray lines. Some of the wood does not have any lines at all. This shows that lines 

feature in wood cross sectional surface may be the key or important features that 

should be added in the automated wood recognition system. 

1.3 Research Objective 

The prototype of the intelligent tropical wood recognition had successfully 

been developed but the system performances need to be improved for the industrial 

use. The objectives of this thesis are as follows: 

(a) To develop a new feature extraction method for automated tropical wood 

recognition system based on the line properties and distribution using 

Gestaltic Grouping of Line Segments detection algorithm. 

(b) To evaluate and validate the newly developed line feature extraction method 

for automated tropical wood species identification. 
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(c) To determine the most effective features extractor that provides the highest 

accuracy during classification in automatically recognizing the wood species. 

 

1.4 Research Scope 

The scopes of this research are as follows: 

(a) The proposed method will be trained and tested using images from 20 wood 

species that were taken using the new microscopic camera. Two databases 

will be used in this research which are Database A1 and Database A2. 

(b) Several algorithms are used for development of the system such as a contrario 

model is used for detecting the line segment, SPLD as a feature extraction 

and K-Nearest Neighbor (KNN) as a classifier. 

(c) The recognition of the tropical wood species focuses on wood species in 

Malaysia only and based on the wood anatomy images. 

(d) Input images are all in grayscale because the macroscopic wood classification 

does not rely on the wood colour. 

 

1.5 Thesis Contribution 

The major contributions described in this thesis are as follows:   

(a) A novel feature extraction method based on wood microscopic line features 

namely Statistical Properties of Line Distribution (SPLD) technique to 

capture the discriminant line features of each species. 

(b) Finding the best combination of feature extraction methods including the new 

line-based features for accurate tropical wood species identification. 
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1.6 Thesis Outline 

This thesis is organized into five chapters described as follows: 

(a) Chapter 1 introduces background information and problem on the tropical 

wood identification. It also consists of the scopes and objectives, 

contributions, and outline of the thesis. 

(b) Chapter 2 provides a critical review on the specific topics of wood 

recognition based on anatomical features, previous research on automated 

wood species identification and literature review on line extraction. 

(c) Chapter 3 explains the methodologies and research flow adopted in this study 

starting from the data acquisition, image processing, feature extraction and 

classifier techniques used. 

(d) Chapter 4 presents the results and discussion of the experiments conducted 

using the proposed methodologies described in Chapter 3. A critical analysis 

of the finding is also presented.  

(e) Chapter 5 presents the conclusion of this research, the limitation of study and 

the recommended future works that can improve upon the findings.  
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