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ABSTRACT 

Human Action Recognition (HAR) is critical in video monitoring, human-

computer interaction, video comprehension, and virtual reality. While significant 

progress has been made in the HAR domain in recent years, developing an accurate, 

fast, and efficient system for video action recognition remains a challenge due to a 

variety of obstacles, such as changes in camera viewpoint, occlusions, background, 

and motion speed. In general, the action recognition model learns spatial and temporal 

features in order to classify human actions. The state-of-the-art approaches to deep 

learning skeleton-based action recognition rely primarily on Recurrent Neural 

Networks (RNN) or Convolutional Neural Networks (CNN). RNN-based action 

recognition methods only model the long-term contextual information in the temporal 

domain. In return, they neglect the spatial configurations of articulated skeletons where 

the joints are strongly discriminative. Therefore, it is challenging to extract high-level 

features. In contrast, action recognition based on CNNs is incapable of modelling long-

term temporal dependency. Typically, implementations stack a limited number of 

frames and convert them into images to represent spatio-temporal information. 

However, this approach is susceptible to information loss during the conversion 

process. This study proposes STEM-Coords as pre-processing and features extraction 

technique, to effectively represent spatio-temporal features using joint coordinates 

from a human pose. The feature set comprised normalized joint coordinates and their 

respective speed was represented tabularly as input for the Neural Oblivious Decision 

Ensemble (NODE) classification model. The proposed STEM-Coords was validated 

on three benchmark datasets KTH, RealWorld HAR, and MSR DailyActivity 3D. Our 

method outperformed the state-of-the-art approaches on every dataset with 97.3%, 

99.3%, and 97.4% accuracy rates, respectively. The results demonstrated that our 

proposed method effectively and efficiently represents spatio-temporal information 

while maintaining robustness to partial occlusion, anthropometrically, and view-

invariant.. 
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ABSTRAK 

Pengecaman Tindakan Manusia (HAR) adalah penting dalam pemantauan 

video, interaksi manusia-komputer, pemahaman video dan realiti maya. Walaupun 

kemajuan ketara telah dicapai di dalam domain HAR dalam beberapa tahun 

kebelakangan ini, pembangunan sistem yang tepat, pantas dan cekap untuk 

pengecaman tindakan manusia menggunakan video kekal mencabar disebabkan oleh 

pelbagai halangan, antaranya termasuk perubahan dalam sudut pandang kamera, 

halangan pandangan, latar belakang dan kelajuan gerakan. Secara amnya, model 

pengecaman tindakan mempelajari ciri ruang dan temporal untuk mengklasifikasikan 

tindakan manusia. Pendekatan tercanggih untuk pengecaman tindakan manusia 

berasaskan rangka deep-learning bergantung terutamanya pada Rangkaian Neural 

Berulang (RNN) atau Rangkaian Neural Konvolusi (CNN). Kaedah pengecaman 

tindakan manusia berasaskan RNN hanya memodelkan maklumat kontekstual jangka 

panjang dalam domain temporal. Oleh itu, ia mengabaikan konfigurasi rangka badan 

manusia dalam domain ruangan di mana ianya sangat diskriminatif. Sehubungan 

dengan itu, adalah sangat mencabar untuk mengekstrak ciri-ciri berkualiti tinggi. 

Sebaliknya, pengecaman tindakan manusia berasaskan CNN tidak mampu 

memodelkan ciri temporal jangka panjang. Pelaksanaannya adalah berdasarkan 

penyusunan bilangan bingkai video yang terhad dan penukaran kepada bentuk imej 

bagi mewakili maklumat ruangan dan temporal. Walau bagaimanapun, pendekatan ini 

terdedah kepada kehilangan maklumat semasa proses penukaran imej. Kajian ini 

mencadangkan STEM-Coords sebagai pra-pemprosesan dan teknik pengekstrakan 

ciri, untuk mewakili ciri ruangan dan temporal dengan berkesan menggunakan 

koordinat daripada rangka manusia. Set ciri terdiri daripada koordinat sendi ternormal 

dan kelajuan sebagai data input untuk model klasifikasi Neural Oblivious Decision 

Ensemble (NODE). STEM-Coords yang dicadangkan disahkan pada tiga set data 

penanda aras KTH, RealWorld HAR dan MSR DailyActivity 3D. Kaedah ini 

mengatasi pendekatan terkini pada setiap set data dengan kadar ketepatan 97.3%, 

99.3% dan 97.4%. Hasil kajian ini menunjukkan bahawa kaedah yang dicadangkan 

adalah berkesan dan cekap untuk mewakili maklumat ruangan dan temporal sementara 

juga teguh kepada oklusi separa, antropometrik dan perubahan pandangan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

In recent years, Human Action Recognition (HAR) has emerged as a 

significant area of study in computer vision. It is used in a variety of applications, 

including human-computer interaction [1], autonomous driving vehicles [2], video 

surveillance [3], e-health [4], and patient tracking [5].  

The primary goal of HAR is to interpret human behavior and actions using 

sensors or visual data. The HAR process is typically composed of four primary steps: 

data acquisition, pre-processing, feature extraction, and classification. Data acquisition 

is the process of obtaining human data from any source input. Pre-processing is the 

process of eliminating redundant, irrelevant, or noisy features in order to enhance the 

selected feature set. Two examples of pre-processing techniques are feature 

normalization and feature selection. Meanwhile, feature extraction is the process of 

transforming data into processable features while retaining the discriminative 

information in the original dataset. The last step is classification, which predicts an 

action class label based on the given data. 

There are three main categories of HAR approaches: vision-based action 

recognition, sensor-based action recognition, and multimodal action recognition [6, 7]. 

The primary distinction between vision-based and the other two categories is that 

vision-based approaches utilize 2D or 3D data in the form of images or videos. In 

contrast, sensor-based methods use time-serial data readings from wearable sensors 

[7]. Wearable devices such as smartphones, smart watches, and fitness wristbands have 

been developed in recent years. They are equipped with microprocessors and sensors 

that enable computation and communication.  
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Wearable devices have several limitations, the most significant being that they 

must typically be worn and operated continuously. As a result, specific technical 

specifications are required, such as battery life, sensor size, and performance [8]. This 

may pose difficulties in terms of readiness and deployability for real-time applications. 

Additionally, they may be inefficient or inappropriate for use in specific scenarios, 

such as crowd applications or others. These limitations, however, do not apply to HAR 

based on computer vision. Instead, the implementation applies to various applications 

without complicated technical requirements or constraints. Typically, the vision-based 

HAR algorithm generates a label after observing the entirety of a human action being 

performed in a video. In computer vision, the term "human action" refers to various 

movements ranging from simple joint movement to complex joint movements 

involving multiple joints and the human body. However, video-based classification 

has progressed more slowly than expected due to various factors, including the high 

computational cost. Besides that, the datasets for this application are limited because 

of the difficulties of collecting, annotating, and storing videos. 

Researchers have published numerous studies on action recognition using 

images or video data since approximately 1980 [9, 10]. They have frequently followed 

or been inspired by elements of the operating principle of the human vision system. 

The human vision system receives visual information about an object's movement, 

shape, and change over time. The observations are passed into the perception system 

for recognition. Numerous researchers have investigated the biophysical processes 

underlying the human recognition system in order to develop computer vision systems 

with comparable performance. However, due to various constraints, such as 

environmental complexity, scale variation, non-rigid shapes, background clutter, 

viewpoint variation, and occlusions, computer vision systems are unable to fully 

realize some fundamental aspects of the human vision system. 
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1.2 Problem Statement 

Although significant progress has been made in the HAR domain in recent 

years, developing an accurate, fast, and efficient system for video action recognition 

remains challenging due to various obstacles, including changes in camera viewpoint, 

occlusions, background, and motion speed. Historically, video-based action 

recognition techniques have emphasized the extraction of handcrafted global features 

like silhouette, shapes, and optical flow [11-23]. However, due to its sensitivity to 

noise, occlusions, and viewpoint changes, it has become increasingly obsolete. 

Moreover, silhouettes and shapes are now more uncomplicated to obtain without 

sophisticated algorithms due to the advancement of the modern RGBD camera. 

Therefore, research has shifted their attention to handcrafted local features to 

resolve the issues caused by global features. It has been demonstrated that most local 

features are robust to noise and partial occlusions. Numerous local representations for 

action recognition, including spatio-temporal interest points (STIP) [24-29] and Dense 

trajectories [30-33], have been proposed and successfully implemented. However, 

although these local features produce excellent results in HAR, they come with several 

limitations. One of the limitations is the lack of stable discriminative interest points 

because it is difficult to identify and maintain the stability of interest points with the 

number of points discovered. As a result, these techniques remain limited to minor 

point detection or low-resolution video.  

To overcome the challenges faced by global and local features, researchers try 

to take advantage of the development of low-cost depth sensors [34]. Previously, 

studies utilizing depth sensors were limited due to their high cost and technical 

complexity. Depth sensors generate precise depth maps of human action. Furthermore, 

most depth sensors incorporate real-time skeleton estimation and tracking algorithms, 

which simplifies the collection of skeleton information. This is a high-level 

representation of the human body appropriate for the motion analysis problem. Thus, 

utilizing depth maps and skeletal information can overcome the limitations of 

conventional RGB-based approaches. As a result, numerous depth sensor approaches 

have been proposed [35-37]. However, as standalone features, depth maps are 
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ineffective at recognizing human actions. Due to the absence of temporal information, 

it is difficult to distinguish between dynamic actions such as running, walking, and 

jogging. As a result, depth maps are frequently combined with other features such as 

skeletal information or handcrafted RGB video features. Additionally, depth sensors 

have some significant limitations. For example, low-cost depth sensors cannot operate 

in direct sunlight and have a limited range and field of vision. As a result, the data 

extracted from depth sensors are extremely noisy, necessitating additional pre-

processing. 

To address this issue, researchers developed a pose estimation network that can 

generate skeleton information directly from videos. Skeleton data derived from the 

pose estimation network can capture the motions of human skeleton joints and are 

illumination invariant [38]. However, skeleton data require pre-processing because 

they are not view-invariant and are susceptible to anthropometric variability. As a 

result, the features have lower discriminatory power. Several handcrafted pose 

estimation approaches have used more sophisticated geometric tools to model human 

actions [39, 40]. Because these descriptors are derived using invariant features such as 

the distance between joints, angles, and transformation matrices, they are implicitly 

unaffected by viewpoint variability. Alternatively, applying an alignment pre-

processing step can achieve similar results before performing the descriptor 

computation, reducing the system's overall complexity.  

While these representations have demonstrated their efficacy in terms of 

computation time and accuracy, it has been demonstrated that handcrafted features 

perform well on a limited number of datasets [41]. For example, handcrafted features 

are optimized for a specific dataset and may not be applicable to other datasets. This 

makes it difficult for action recognition to be generalized into broader applications. 

Additionally, because handcrafted methods are effective at avoiding overfitting, they 

may be unable to learn from larger datasets. However, with the increased availability 

of large benchmark datasets in recent years, the future research trend is more likely to 

shift toward using deep learning features. 
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Numerous deep learning approaches have been proposed for recognizing 

human actions using skeletons. The most frequently used deep learning architectures 

are CNN and RNN. However, few studies investigate the use of alternative network 

architectures. Temporal information can be extracted from spatial sequences using 

RNN architectures. A significant disadvantage of their approach is the exploding and 

vanishing gradient problem and the difficulty of parallelizing their training.  

Therefore, a more advanced RNN, the LSTM, is used to enable training on 

long sequences. However, even if LSTM networks are designed to explore long-term 

dependencies, it is still challenging to learn the information in an entire sequence with 

numerous timestamps [42, 43]. These RNN-based action recognition methods only 

model the long-term contextual information in the temporal domain. In return, they 

neglect the spatial configurations of articulated skeletons where the joints are strongly 

discriminative. Therefore, it is difficult for LSTM networks to extract high-level 

features [44, 45]. 

On the other hand, Convolutional Neural Networks (CNNs) have demonstrated 

tremendous potential for image pattern recognition [46]. However, for video action 

recognition, it still lacks the capacity to model the long-term temporal dependency of 

the entire video [47]. Therefore, the implementations typically focus on optimizing 

spatial feature extraction through various normalization methods. Some approaches 

make use of spatio-temporal characteristics. However, the extraction method involves 

a highly complex combination of spatial and temporal features. The implementation is 

frequently based on the conversion of skeleton sequences to images in which the 

spatio-temporal information is reflected in the image properties, such as color and 

texture [48]. One disadvantage of the approach is that it is unavoidable for temporal 

information to be lost during the data conversion. 
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1.3 Research Goal 

In accordance with the stated problem statement, the primary goal of this study 

is to develop a deep learning skeleton-based approach for an action recognition system 

capable of accurately predicting actions from video sequences by efficiently and 

effectively representing spatio-temporal features using joint coordinates from a human 

pose that are robust to part occlusion, and anthropometric-, illumination-, view-

invariant. 

1.3.1 Research Objectives 

The objectives of the research are: 

(a) To develop a skeleton-based action recognition model by combining a 

Residual Network (ResNet) pose estimation model with a Neural Oblivious 

Decision Ensemble (NODE) architecture as the classification network. 

(b) To develop pre-processing and feature extraction techniques for skeleton joint 

location in order to enable temporal and spatial modeling in the feature set 

represented tabularly for the classification model (a). 

(c) To validate the effectiveness of proposed method (b) by conducting 

performance analysis of the classification network in (a) in terms of overall and 

per class classification over three benchmark datasets: KTH, RealWorld HAR, 

and MSR DailyActivity 3D. 

 

1.4 Research Scope 

Human action interpretation from a video is a hot research topic these days. 

The research conducted in this domain can be classified into two subfields: action 

recognition and detection. After processing the video, an action label is assigned to it 

in action recognition. Meanwhile, action detection identifies and locates the action 

within the video frame. This research focuses on detecting and recognizing human 
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actions based on deep learning architecture. Meanwhile, humans are detected and 

localized in the frame in spatial and temporal domains by using a pose estimation 

network that extracts skeletal information for the prediction of action labels. 

Most action classification algorithms can be classified into three types: 

template-based, generative, or discriminative models. The term "template-based" 

refers to a technique for identifying the shared characteristics of a specific action. This 

characteristic may consist of two-dimensional or three-dimensional images, volumes, 

or a sequence of view models. The generative model is a technique for determining 

the most likely label prediction by calculating the joint probabilities of input X and 

class labels Y using the Bayes rule. On the other hand, the discriminative model can 

directly determine the label for prediction by utilizing advanced machine learning 

algorithms. RNN and CNN are the two most frequently used discriminative models in 

the literature. This study uses the deep learning Neural Oblivious Decision Ensemble 

(NODE) architecture to develop our classification model. 

There are two types of input modalities: vision-based and sensor-based. 

Sensor-based classification refers to the process of classifying actions using data from 

inertial sensors such as an accelerometer and a gyroscope. Although it is rich in motion 

data, it lacks spatial information. Therefore, we concentrate on utilizing RGB videos 

as our input in this study. RGB video contains a wealth of spatiotemporal information 

critical for recognizing human action, particularly in dynamic and static activities. We 

use a pose estimation network to extract the discriminative spatial configuration of 

articulated skeletons. Additionally, we can model the temporal dependencies by 

considering skeletons in multiple sequences of frames.  

Human actions can be classified into four broad categories based on their 

context. The first category is "gestures," which denotes a precise movement of a body 

part, such as "raising a leg." The second category is "action," which refers to a 

collection of a person’s coordinated gestures, such as "walking" or "waving." The third 

category is "Interaction," which encompasses situations involving two or more people, 

objects, or both simultaneously. For example, pushing another person is a two-person 

interaction, whereas lifting a box is a human-object interaction. The final category is 
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"Group Activity," which includes activities multiple individuals participate in, such as 

a group of people running. This study focuses on recognizing single-person actions, 

particularly on “action” and “human-object interaction” categories. 

1.5 Research Contributions 

In general, this research makes two significant contributions: 

First, we developed a skeleton-based action recognition model that utilizes 

spatio-temporal joint coordinates as features. We introduced STEM-Coords, a method 

of extracting spatial and temporal joint coordinates information from a set of window-

frames. This method includes eliminating redundant joints and normalizing the 

remaining joints, which we refer to as "active joints," thereby enhancing the feature 

saliency. Therefore, we conducted an extensive analysis to demonstrate the 

effectiveness of STEM-Coords. We utilize a simple and robust SimpleBaseline pose 

estimation network to obtain raw skeletal data. Due to the lightweight of the 

classification model, real-time HAR implementation is possible. 

Second, our classification model is based on the Neural Oblivious Decision 

Ensemble (NODE) architecture. It is a recent state-of-the-art deep learning model for 

tabular data. Our classification system is the first architecture implementation in the 

literature for any application. The developed model achieves state-of-the-art 

performance on three challenging benchmarks: KTH, RealWorld HAR, and MSR 

DailyActivity 3D. We conducted a comprehensive performance analysis of the 

classification model against various state-of-the-art approaches. This analysis 

demonstrated the effectiveness of the model for individual action classes and overall 

actions. 

1.6 Thesis Organization 

The remainder of this thesis follows the following structure: Chapter 2 

conducts a comprehensive review of the literature in the field of human action 

recognition. This section discusses HAR technology and research evolution, from 
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conventional to contemporary approaches. First, it discusses the three broad categories 

of HAR: template-based, generative, and discriminative models. The discussion then 

narrows to the discriminative model and discusses the various input modalities used in 

the literature, including wearable sensor-based and vision-based. Next, this chapter 

discusses the feature representation for the vision-based action recognition system. 

Finally, this chapter concludes with a critical review of the relevant literature. 

Chapter 3 describes the detailed methodology of our action recognition system. 

It begins by providing an overview of the overall model. The overview consists of 

several blocks that represent their primary function. The function of the blocks is 

discussed in detail by sections: pose estimation, feature pre-processing and extraction, 

and classification. The latter part of this chapter discusses the experimental procedures 

and parameters. 

Chapter 4 provides an in-depth analysis of the effectiveness of our feature 

extraction method, STEM-Coords, and the performance evaluation of the 

classification model. The analysis is based on three experiments: 1) Investigating the 

effect of removing redundant joints, 2) Investigating the effect of incorporating 

temporal information, and 3) Investigating the performance of the model in 

comparison to other state-of-the-art approaches. Three challenging datasets were used 

for the experiments: KTH, RealWorld HAR, and MSR DailyActivity3D. Finally, 

chapter 5 summarizes the research by providing conclusions and outlining the 

recommendation and future direction of the research. 
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