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ABSTRACT 

Tomatoes are fruits with high nutrition and high in fibre; packed with vitamin 

C, vitamin K1, vitamin B9 and minerals. The global tomato processing market has 

reached 43.4 million tons in 2021. It is important to determine maturity level of the 

crops before harvesting to optimize yield. However, manual inspection of ripe 

tomatoes required huge labour resources and is time consuming. The amount of labour 

force for fruit harvesting has increased over the years due to increasing demand. 

Recently, some studies have attempted to evaluate the feasibility of smart agriculture 

involving machine learning for harvest ripeness detection. However, these works 

typically used smaller data size, simple dataset with no background or leaves or 

explored limited machine learning model. Hence, this thesis aimed to identify tomato 

ripeness detection using two machine learning networks such as Mask RCNN and 

YOLOv5. Both models were compared based on minimum average precision. The 

results of these algorithms were benchmarked with previous works in terms of 

precision and recall. The dataset for this work consisted of 1000 high resolution images 

(3024 x 4032) with a total of 9063 tomatoes consisting of unripe, half ripe and ripe 

tomatoes with leafy background to emulate actual environment in a tomato field. The 

images were annotated with bounding box in VGG image annotator prior to training 

and testing with the Mask R-CNN, YOLOv5 networks. After that, these images were 

divided to training, validation and testing set with 80:10:10 ratio and trained using 

TensorFlow. Parameters such as epochs, step per epochs, learning rate, batch size were 

tuned to improve training accuracy and reduce training loss. Minimum average 

precision achieved for Mask R-CNN was 0.903 and YOLOv5 was 0.927. Precision 

and recall for Mask RCNN was 89.94% and 87.14% respectively. YOLOv5 achieved 

better precision and recall of 92.72% and 90.87% respectively, which were better 

compared to Mask RCNN. 
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ABSTRAK 

Tomato merupakan sejenis buah-buahan yang berkhasiat tinggi. Tomato 

mengandungi nutrisi yang tinggi dalam serat, vitamin C, vitamin K1, vitamin B9 dan 

mineral. Pada tahun 2021, pasaran pemprosesan global tomato telah mencecah 43.4 

juta ton. Oleh itu, penentuan tahap kematangan tomato sebelum menuai adalah 

sangat penting bagi mengoptimumkan hasil. Kini, ramai yang menggunakan mata 

kasar dan membuat pemeriksaan secara manual dalam proses penuaian. 

Keadaan ini memerlukan sumber tenaga manusia yang besar dan amat makan 

masa. Sejak kebelakangan tahun ini, jumlah tenaga buruh telah bertambah kerana 

pasaran tomato semakin meningkat. Beberapa kajian yang melibatkan pertanian 

pintar dalam sektor penuaian tomato telah cuba dilaksanakan dengan menggunakan 

pembelajaran mesin baru-baru ini. Walau bagaimanapun, kajian-kajian tersebut 

biasanya menggunakan saiz data yang kecil, ringkas tanpa latar belakang atau 

daun. Kajian-kajian tersebut juga meneroka rangkaian pembelajaran mesin yang 

terhad. Justeru, tesis ini bertujuan untuk mengenal pasti pengesanan kematangan 

tomato menggunakan beberapa seni bina rangkaian pembelajaran mesin seperti 

Mask RCNN dan YOLOv5. Prestasi rangkaian ini dibandingkan dengan kajian-

kajian terdahulu dari segi kejituan purata minimum, kejituan dan perolehan 

kembali. Set data untuk tesis ini terdiri daripada 1000 imej resolusi tinggi (3024 

x 4032) yang melibatkan 9063 biji tomato belum masak, separuh masak dan 

masak. Imej-imej ini mempunyai latar belakang berdaun. Imej-imej diberi anotasi 

secara menual dalam menggunakan VGG image annotator. Set data tersebut 

dibahagikan kepada Latihan, ujian dan pengesahan dalam nisbah 80:10:10. 

Kejituan purata minimum untuk Mask RCNN mencapai 0.903 dan YOLOv5 

mencapai 0.927. YOLOv5 menpunyai kejituan dan perolehan kembali yang 

lebih tinggi iaitu 92.72% dan 90.87% berbanding dengan Mask RCNN iaitu 

89.94% dan 87.14%.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Tomato processing is one of the most internationally diversified agricultural 

sectors. This is because tomatoes are nutritious and beneficial to human health. 

Tomatoes are consumed worldwide due to this factor. Tomato production quantities 

are much higher compared to other crops grown worldwide. It is six times higher than 

rice and three times more than potatoes [1].  

Tomato are common fruits that have high nutrition in fibre, vitamin C, vitamin 

K1, vitamin B9 and minerals. Usually, tomatoes can come in different maturity and 

colours such as red, yellow and green. Red represents ripe, yellow represents half ripe 

and green represents unripe [2]. The global tomato processing market has reached 43.4 

million tons in 2021. It is important to determine maturity level of the crops before 

harvesting to optimize yield. However, manual inspection of ripe tomatoes required 

huge labour resources and is time consuming. The amount of labour force for tomato 

harvesting has increased over the years due to increasing demand. The global tomato 

processing market expects to reach 54.5 million tons in 2027 [3]. As a result, tomato 

farming is crucial in rural and suburban areas of emerging nations since it can boost 

the local economy. 

When immature or unripe fruits are harvested, the quality of these fruits are 

poor. Usually, they are incapable of ripening. Immature fruits are susceptible to 

internal deterioration and decay. Similarly, if fruits are harvested late, the chances of 

getting rotten fruits are very high. Thus, improper harvest timing will result in drastic 

postharvest loss. In order to reduce the losses of preharvest and postharvest fruits 

qualitatively and quantitatively, it is important to understand the maturity condition of 

fruit. The loss of quality of tomatoes is one of the major challenges faced in tomato 
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agriculture sector [4]. Typically, farmers use their personal experience to detect type 

of disease and maturity level of tomatoes. Manual inspection is used to determine the 

tomato crop's level of maturity. This in turn leads to a dependency on manual labour, 

which is inconsistent. To overcome these problems, smart harvesting is being 

promoted in recent years. 

1.2 Problem Statement 

Recently, some studies have attempted to evaluate the feasibility of smart 

agriculture involving machine learning for harvest ripeness detection. However, these 

works typically used smaller data size, simple dataset with no background or leaves or 

explored limited machine learning networks. From the literature review, most works 

focused on single method to detect tomato ripeness such as SVM, CNN, decision tree, 

GLCM, Mask RCNN, Faster RCNN and YOLOv3. Also, some of the studies detect 

tomatoes without background. It is less effective during harvesting process because 

the tomatoes are actually hanging on tomato trees in actual environment, and typically 

surrounded by leaves.  

1.3 Objectives 

The aims of this project are: 

(a) To configure two machine learning networks to detect tomato ripeness. 

(b) To evaluate the performance of the two types of machine learning architecture 

in tomato ripeness detection. 

(c) To validate the algorithm with bigger dataset - 1000 images depicting a total 

of 9063 unripe, half ripe and ripe tomatoes with leafy background within the 

images.  
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1.4 Scope of Work 

The project's scopes are as follows:  

(a) To use publicly accessible database and to work only on tomatoes. 

(b) Dataset would be labelled manually using VGG annotator tool. 

(c) Two different object detection networks, which are Mask RCNN and 

YOLOv5, would be implemented and compared. 

(d) The performance of these two different architectures would be evaluated based 

on performance accuracy and mAP of tomato ripeness classification.  

(e) Mask RCNN and YOLOv5 would be trained using TensorFlow. 

(f) Intel Tiger Lake core i7-11800H and 6GB RTX 3060 GPU would be used as 

computational platform to train the network. 
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