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ABSTRACT 

Deep learning is an important element of data science to automate predictive 

analysis for a computer to detect and classify the objects into different classes based 

on trained datasets, either through supervised learning, semi-supervised learning, or 

unsupervised learning. The aim of this research work is to use a deep learning 

algorithm, improved single shot detector (SSD) which is capable to detect vehicles, so 

that the proposed algorithm not only achieve fast detection speed, but also achieve 

high accuracy in object detection. Although there is other algorithm available in the 

context of deep learning such as You Only Look Once (YOLO) and Faster-Region 

Based Convolutional Neural Networks (Faster R-CNN), most of them have trade off 

between accuracy and speed in object detection. The accuracy also degrades when 

detecting small objects or objects that are further away. Besides, current network 

models have difficulties in identifying objects by relying solely on the pre-trained 

datasets, as the traffic participants may vary across cities, with different colours and 

shapes. Furthermore, training datasets manually with a variety of car models’ images 

would be time consuming due to the huge datasets. Hence, one of the research 

objectives is to implement mobilenet V2 network architecture on existing SSD 

network to improve the detection accuracy (mAP, mean average precision), inference 

time (s, second) and sensitivity towards small objects in complex backgrounds without 

increasing the computation complexity. The second research objective of this project 

is to apply transfer learning mechanism for the custom dataset to increase detection 

accuracy against small objects and reduce training time. In this research, custom 

datasets are used for training and testing, where the datasets are annotated using 

labelImg. Google Colab and some open-source libraries, Tensorflow and Keras will 

be used in model training. The performance of improved-SSD in object detection is 

evaluated based on inference time (second) and mean average precision (mAP). All 

models are pretrained using Common Objects in Context dataset (COCO). On top of 

that, own custom dataset is used to archive better accuracy. Based on the result 

obtained, 1.76 seconds needed for Faster R-CNN model to perform inference per 

image whereas 1.24 seconds needed for proposed model to perform the same tasks. 

The inference time of proposed model is approximate 30% faster than the Faster R-

CNN model. The mean average precision of the proposed model is 73.4% whereas the 

average recall rate of the proposed model is 80%. Besides, the proposed model obtains 

approximately 10% improvement in terms of mAP detecting small object if compared 

with Faster R-CNN model. The proposed model able to detect vehicles with shorter 

inference time and good accuracy. The model shows improvement in detecting small 

objects and objects that are further away with better accuracy. In short, the trained 

model can serve as a good starting point for the development of autonomous car. 
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ABSTRAK 

Pembelajaran mendalam ialah elemen penting sains data untuk 

mengautomasikan analisis ramalan bagi komputer untuk mengesan dan mengelaskan 

objek ke dalam kelas yang berbeza berdasarkan set data terlatih, sama ada melalui 

pembelajaran diselia, pembelajaran separa penyeliaan atau pembelajaran tanpa 

penyeliaan. Matlamat kerja penyelidikan ini adalah untuk menggunakan algoritma 

pembelajaran mendalam, single shot detector (SSD) yang diubah suai yang mampu 

mengesan kenderaan, supaya algoritma yang dicadangkan bukan sahaja mencapai 

kelajuan pengesanan pantas, tetapi juga mencapai ketepatan tinggi dalam pengesanan 

objek. Walaupun terdapat algoritma lain yang tersedia dalam konteks pembelajaran 

mendalam seperti You Only Look Once (YOLO) dan Faster-Region Based 

Convolutional Neural Networks (Faster R-CNN), kebanyakannya perlu membuat 

pilihan antara ketepatan dan kelajuan dalam pengesanan objek. Ketepatan juga 

merosot apabila mengesan objek kecil atau objek yang lebih jauh. Selain itu, model 

pembelajaran mendalam hari ini menghadapi kesukaran dalam mengenal pasti objek 

dengan bergantung semata-mata pada set data yang sedia ada, kerana peserta trafik 

mungkin berbeza-beza di seluruh bandar, dengan warna dan bentuk yang berbeza. 

Tambahan pula, melatih set data secara manual dengan pelbagai imej model kereta 

akan mengambil banyak masa kerana set data yang besar. Oleh itu, salah satu objektif 

kajian adalah untuk mengunakan seni bina rangkaian mobilenet V2 pada rangkaian 

SSD sedia ada untuk meningkatkan ketepatan pengesanan (mAP, mean average 

precision), masa inferens (s, saat) dan kepekaan terhadap objek kecil dalam latar 

belakang kompleks tanpa melibatkan kompleks pengiraan. Objektif penyelidikan 

kedua kertas ini adalah untuk menggunakan mekanisme pembelajaran pemindahan 

untuk set data tersuai untuk meningkatkan ketepatan pengesanan terhadap objek kecil 

dan mengurangkan masa latihan. Dalam penyelidikan ini, set data tersuai digunakan 

untuk latihan dan ujian, di mana set data dianotasi menggunakan labelImg. Google 

Colab dan beberapa perpustakaan sumber terbuka, Tensorflow dan Keras akan 

digunakan dalam latihan model. Prestasi SSD yang diubahsuai dalam pengesanan 

objek dinilai berdasarkan masa inferens (saat) dan mean average precision  (mAP). 

Semua model dipralatih menggunakan set data Common Objects in Context (COCO). 

Selain itu, set data tersuai sendiri digunakan untuk meningkatkan ketepatan. 

Berdasarkan keputusan yang diperolehi, masa diperlukan untuk model Faster R-CNN 

melakukan inferens per imej adalah 1.76 saat manakala model mobilenet V2 SSD 

hanya mermerlukan 1.24 saat untuk melaksanakan tugas yang sama. Masa inferens 

model yang dicadangkan adalah lebih kurang 30% lebih cepat daripada model Faster 

R-CNN. Mean average precision bagi model yang dicadangkan adalah 73.4%

manakala recall rate bagi model yang dicadangkan adalah 80%. Selain itu, model yang 
dicadangkan memperoleh kira-kira 10% peningkatan dari segi pengesanan mAP 

objek kecil jika dibandingkan dengan model Faster R-CNN. Model yang dicadangkan 

dapat mengesan kenderaan dengan masa inferens yang lebih pendek dan ketepatan 

yang baik. Model ini menunjukkan peningkatan dalam mengesan objek kecil dan objek 

yang berada lebih jauh dengan ketepatan yang lebih baik. Ringkasnya, model terlatih 

boleh berfungsi sebagai titik permulaan yang baik untuk pembinaan kereta autonomi.
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

A report presented by Standard Law School [1] stated that the root cause of at 

least 90% of motor vehicle accidents is human error, and a large percentage is due to 

driver negligence such as speeding, aggressive and reckless driving, distracted driving, 

drowsy driving, and drunk driving. In the National Motor Vehicle Crash Causation 

Survey reported to the US Congress [2] that did not state driver negligence as the sole 

cause of the crash, it was mentioned that human error is still a significant facet in the 

sequence of events that lead to a crash. Vehicle’s detection using deep learning have 

the potential to reduce fatalities on the road by eliminating human errors to improve 

the safety and efficiency of the transportation systems [3].  

 

For a vehicle to operate in a complex dynamic environment, it needs to be able 

to receive the information and react in a timely manner to reach human-level 

reliability. With the current upturn in object detection in traffic scenes for vehicles, 

deep learning has seen many breakthroughs in the past years. While the task of object 

detection may be perceived as basic as to classify and locate objects in the image, even 

the most powerful approach will face a great deal of challenges, such as complex 

weather conditions, changeable lighting, complex environment backgrounds and real- 

time detection. 

 

In this project, object detection with the application of deep learning will be 

discussed, particularly on the aspect of vehicles. Various object detection algorithm 

will be studied and reviewed, which involved traditional computer vision (feature-

based detection), two-stage detector and one-stage detector. The review will see the 

application that related works have implemented with these methods in traffic 

scenarios. 
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1.2 Problem Statement 

Vehicle’s detection often refers to detection based on picture or video frames 

which contains vehicles [4]. The existing methods become less adaptive in specific 

road scenarios such as bad weather, traffic condition, occlusion occurs on objects, 

varying road scenes and diverse vehicle characteristics [5]. 

 

In ensuring that the object detection model has a high accuracy, the choice of 

a suitable dataset is critical. The state-of-the-art model has difficulty in identifying 

objects by relying solely on the pre-trained datasets, as the traffic participants may 

vary across cities in the forms of shapes, colors, sizes, lighting and more. Furthermore, 

training datasets manually with a variety of car models would be time consuming due 

to the huge datasets. 

 

Therefore, there is a need for an improved method to address the issue of 

vehicle detection accuracy as the current on-road object detection result of the state-

of-the-art methods is not accurate in some scenarios. The accuracy also degrades when 

detecting small objects or objects that are further away. 

 

1.3 Research Aims and Objectives 

1.3.1 Research Aim 

The aim of this research work is to improve single shot detector (SSD) by fine-

tuning hyperparameter and apply image augmentation technique, which is capable to 

detect vehicles, so that the model not only achieve fast detection speed, but also 

achieve higher accuracy towards small object in object detection. 
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1.3.2 Research Objectives 

The objectives of the research are : 

(a) To improve the existing SSD network model by adjusting certain training 

parameter to improve the detection accuracy (mAP, mean average precision), 

inference time (s, second) and sensitivity towards small objects. 

(b) To apply transfer learning mechanism for the custom dataset to increase 

detection accuracy and reduce training time. 

 

1.4 Project Scopes 

The scopes of this project are : 

(a) Implementation of Improved-SSD for object detection in vehicles with the 

performance measured by mAP and inference time.  

(b) Custom dataset is built and trained with transfer learning mechanism. 

 

 

1.5 Project Contribution 

The sensitivity of the original SSD network toward smaller object can be 

improved by fine tuning certain hyperparameter [6] and building own custom dataset.  
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1.6 Report Organization 

This report consists of five chapters. Chapter 1 discusses about the research’s 

background, describes the problem statement, aims, objectives, project scopes, and 

expected project contribution. Chapter 2 elaborates the literature review, covering the 

background studies on related topics and related works conducted with similar 

methods or objectives. Chapter 3 presents the research methodology, explaining the 

project workflow and the algorithms and methods to be implemented. Chapter 4 

presents the result and discussion. Lastly, Chapter 5 concludes the report with the 

summary of findings and ideas on future works. 
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