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ABSTRACT 

In recent years, with the increasing penetration of distributed generators (DGs) 

with large-share capabilities, the efficient coordination of primary and backup 

overcurrent relay (OCR) schemes has emerged as one of the most challenging tasks in 

contemporary MV-distribution networks (DN). The main goal is to design a protection 

scheme to protect the power system where different intermittent sources significantly 

impact. The performance of the existing protection scheme needs to be analysed to 

develop a robust power system. In this project, an IEEE 33 bus system is considered 

for short circuit analysis and protection coordination, relying upon coordination for 

designing of overcurrent protection scheme to operate the relay efficiently and 

disconnect the fault section from the healthy network instantly. It also compares the 

differences between conventional systems and DG-connected radial systems. 

Moreover, the project examined the coordination scheme based on the Optimization 

Algorithm. The optimum coordination increases the sensitivity and reliability of the 

protection system by reducing the operating time of OCRs by using a standard tripping 

characteristic. Improved optimisation strategies have benefited from a new constraint 

that considers the maximum Plug Setting Multiplier (PSM) and improves the 

complementing OCR tripping properties by using optimisation approaches to improve 

coordination time intervals. The Time Multiplying Setting (TMS) for OCR 

coordination is optimised using the Genetic Algorithm (GA) in MATLAB coding 

tools. The ETAP has used the network to test the effectiveness of the proposed new 

constraint to improve the constrained optimisation technique in grid-connected modes. 
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ABSTRAK 

Dalam beberapa tahun kebelakangan ini, dengan peningkatan penembusan 

penjana teragih (DG) dengan keupayaan bahagian besar, penyelarasan yang cekap bagi 

skim geganti arus lebih (OCR) primer dan sandaran telah muncul sebagai salah satu 

tugas yang paling mencabar dalam rangkaian pengedaran MV (DN) kontemporari. ). 

Matlamat utama adalah untuk mereka bentuk skim perlindungan untuk melindungi 

sistem kuasa di mana sumber terputus-putus berbeza memberi impak yang ketara. 

Prestasi skim perlindungan sedia ada perlu dianalisis untuk membangunkan sistem 

kuasa yang teguh. Dalam projek ini, sistem bas IEEE 33 dipertimbangkan untuk 

analisis litar pintas dan penyelarasan perlindungan, bergantung pada penyelarasan 

untuk mereka bentuk skim perlindungan arus lebih untuk mengendalikan geganti 

dengan cekap dan memutuskan sambungan bahagian kerosakan daripada rangkaian 

yang sihat serta-merta. Ia juga membandingkan perbezaan antara sistem konvensional 

dan sistem jejari bersambung DG. Selain itu, projek itu mengkaji skim penyelarasan 

berdasarkan Algoritma Pengoptimuman. Penyelarasan optimum meningkatkan 

sensitiviti dan kebolehpercayaan sistem perlindungan dengan mengurangkan masa 

operasi OCR dengan menggunakan ciri tersandung standard. Strategi pengoptimuman 

yang dipertingkatkan telah mendapat manfaat daripada kekangan baharu yang 

mempertimbangkan Pengganda Tetapan Palam (PSM) maksimum dan menambah 

baik sifat tripping OCR yang melengkapi dengan menggunakan pendekatan 

pengoptimuman untuk meningkatkan selang masa penyelarasan. Tetapan 

Penggandaan Masa (TMS) untuk penyelarasan OCR dioptimumkan menggunakan 

Algoritma Genetik (GA) dalam alat pengekodan MATLAB. ETAP telah 

menggunakan rangkaian untuk menguji keberkesanan kekangan baharu yang 

dicadangkan untuk menambah baik teknik pengoptimuman terhad dalam mod 

bersambung grid.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

With the increases in the cost of fossil fuels and growing environmental 

concerns, significant efforts have been made to develop high-quality alternative energy 

technologies to solve the energy crisis for power system. Recent improvements and 

innovations in power electronic technology have allowed renewable energy sources 

(RES) to be grid-connected, with a significantly increased penetration in the network 

electricity supply. As a result, both academics and businesses have paid high attention 

to the usage of renewable energy resources across the world [1]. 

Renewable energy sources-based distributed generators DG are becoming 

more prevalent, posing a severe threat to the operation of the power system. Protection 

and coordination consider one of the common problems of distribution networks with 

DG penetration [2]. Fuses, recloser, and overcurrent protection provide a trip signal 

that separates the faulty part from the healthy part of the system. When the overcurrent 

relay OCR surpasses a specific value, the relay activates with negative consequences 

for relays and protection systems such as false tripping and coordination loss between 

primary and backup relays. The number of protection required is determined by the 

position and the amount of Photovoltaic PV penetration [3]. Protection mechanisms 

should function adequately in both utility grid linked and island modes of operation. 

DG power production varies from zero to maximum output with standard solar 

irradiation. As a result, these operating conditions cause changing fault current levels 

and reduce voltage and current protection performance. 

Traditional power systems are designed to have a distribution system with 

electricity flowing in one direction, from the transmission network through the 

distribution grid and eventually to the customers [4]. Now a day, the main challenges 
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stem from distributed generator (DG) production output's heavy reliance on variable 

weather conditions that shift rapidly. These include reversed power flow, voltage 

increase, network stability, and protection. In terms of the system protection, the 

integration of DG might result in the redistribution of fault currents in feeder circuits. 

During faults, redistribution may result in a greater current magnitude on the feeder, 

which in some cases exceeds the rating of fuses, breakers, and so on. Changes in fault 

current and direction may also result in a loss of protection coordination between 

protection devices [5]. 

1.2 Problem Statement 

The overcurrent relays observe the current flow from the source to the load. 

They are coordinated so that the downstream relays have to discover the fault first and 

disconnect a feasible minor section of a line upon fault clearance. The relays' 

coordination is maintained by employing time grading. Nowadays, the majority of 

distribution networks (DN) utilize DG as a backup generator to support the main 

generator, particularly when the load in that region is high. Because of the availability 

of DG in the distribution network, the power system operation in that region must be 

changed. Many studies do not pay close attention to the limitations of standard inverse 

time-current characteristics in the commercial OCR installed in the DN, which have a 

significant impact on the coordination time and the total operating time interval of the 

network [6]. Numerical relays integrated in modern DN protection systems are not 

compatible with optimization approaches, causing nuisance tripping and non-

selectivity in the grid protection schemes. However, the technological challenges 

imposed by the significant penetration of distributed generators into modern 

distribution networks generate a new difficulty that does not consider the boundaries 

of standard inverse time-current characteristics in the industrial OCRs linked to the 

distributed network. Additionally, it directly influences the overall amount of 

operating time and the time interval required for coordination (CTI). Furthermore, the 

incompatibility of conventional techniques with the tripping characteristics 

incorporated in numerical relays will lead to nuisance tripping and non-selectivity in 

the operation of distributed network protection systems. 
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1.3 Objectives of the Study 

The purpose of this project is to explore the effects of the DG on the protection 

system of medium voltage distribution networks (e.g., relay operation, setting, and 

coordination) and to provide solutions to the difficulties. The following are the main 

objectives of the project: 

(a) To investigate severity of DG affects overcurrent protection coordination and 

fault current levels in a MV distribution system. 

(b) To examine the power system's parameters such as current flow, voltage, and 

power, in order to coordinate overcurrent relays in a radial distribution system 

with and without DG penetration. 

(c) To formulate overcurrent relay coordination in a radial distribution system with 

the correct settings with and without DG. 

 

1.4 Scope of the Study 

The project examines the effects of DG such as solar PV and wind turbine 

generator (WTG) on a distribution network's overcurrent protection coordination. 

(a) ETAP is simulated distribution networks IEEE33 bus to determine the 

performance of the overcurrent protection system.  

(b) Simulations and investigations are conducted without using of DG. Following 

that, the DG model is connected to the system. The performance of the 

overcurrent protection is checked once more by using ETAP simulation 

software.  

(c) The project examines the influence of distribution generator such as PV and 

wind generator on the protective system's performance.  
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(d) The computation optimization techniques (Genetic Algorithm) are 

implemented to mitigate the relay operation time. 

(e) The radial distribution system has been selected, with balancing fault type 

being tested across the system, followed by a simulation to determine the 

proper coordination for overcurrent relays in the system. 

(f) The investigation is limited to a 12.6 kV medium-voltage network. 

 

1.5 Research Significant 

The main significance of this project is to propose accurate settings for OC 

relays in order to solve coordination problems regarding any change in grid topology 

and to minimize the negative effect of the DG penetration power system on the 

protection relay coordination. This research is also contributed to check a new way to 

set the OC protection relays. 

1.6 Project Outline  

This project is prepared in five chapters as follows: Chapter 1 describes the 

background and problem statement, objectives, scopes, and significances of the study. 

Chapter 2 discusses and reviews some related works of previous studies. Chapter 3 

describes the methodology used to achieve the project's main objectives. Mathematical 

formulation analysis and genetic algorithm are used. Chapter 4 presents the final 

results based on the implementation of the proposed coordination method. All 

implementation cases are proposed to analyze the capability of the proposed method 

to achieve the research objectives. Chapter 5 presents the project conclusion. 
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