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ABSTRACT 

Prediction of malignant ventricular arrhythmia (mVA) is utmost imperative to 

enable earlier medical intervention and prevent sudden cardiac death (SCD). 

However, patients with a history of coronary artery disease (CAD) and congestive 

heart failure (CHF) are at higher risk of SCD. This thesis aimed to develop a reliable 

mVA prediction algorithm with high performance and an earlier prediction time and 

evaluate in a more authentic situation mixed with other cardiac diseases which are 

CAD and CHF. This was done by testing the algorithm on multiple online databases 

which are Sudden Cardiac Death Holter Database (SDDB), MIT-BIH Normal Sinus 

Rhythm Database (NSRDB), Long Term ST Database (LTSTDB) and BIDMC 

Congestive Heart Failure Database (CHFDB). Heart rate variability (HRV) analysis 

with support vector machine (SVM) was employed in the prediction algorithm due to 

its reliability observed in previous works. To investigate the statistical relationship 

between all databases, 65 features were extracted from first, second, third, and fourth 

minute HRV signal before mVA onset and before two hours mark of control signals. 

Experimental results show a significant difference in HRV of mVA signals and other 

non-mVA signals, including six time-domain features and seven nonlinear features. 

Six feature combinations from time-segment-specific classification were found to 

perform best in predicting imminent mVA in situation mixed with CAD and CHF. 

High accuracy of 97.33% with 89.47% sensitivity and 100% specificity was 

achieved. For classification of the four distinct databases, four feature combinations 

of pNN50, MaxNN and CVI with CVNN, SD2, SD1a, or SDNNa achieved a high 

accuracy of 98.67% with 100% sensitivity and 98.21% specificity.  For exploration 

of earlier prediction time, the six best-performing feature combinations in predicting 

imminent mVA with other non-mVA signals were selected for classifier training and 

testing in leave-one-out cross-validation classification on 120-minutes signal. A 

balanced performance with reasonably high accuracy of 73.33%, sensitivity of 

73.68%, specificity of 73.21% and 91.14 minutes of earliest prediction time was 

achieved by combination of pNN50, SD1d, SDNNa with Gaussian radial basis 

function (RBF) SVM and moving average of 15 minutes.  
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ABSTRAK 

Ramalan aritmia ventrikel malignan (mVA) adalah amat penting untuk 

membolehkan perubatan lebih awal dan mencegah kematian mendadak serangan 

jantung (SCD). Walau bagaimanapun, pesakit yang mempunyai sejarah penyakit 

arteri koronari (CAD) dan kegagalan jantung kongestif (CHF) mempunyai risiko 

yang lebih tinggi untuk mengalami SCD. Tesis ini bertujuan untuk mencipta 

algoritma ramalan mVA yang breprestatsi tinggi dan masa ramalan yang lebih awal 

serta dinilai dalam situasi yang lebih tulen bercampur dengan penyakit jantung lain 

iaitu CAD dan CHF. Ini dilakukan dengan menguji algoritma pada beberapa 

pangkalan data dalam talian iaitu Sudden Cardiac Death Holter Database (SDDB), 

MIT-BIH Normal Sinus Rhythm Database (NSRDB), Long Term ST Database 

(LTSTDB) dan BIDMC Congestive Heart Failure Database (CHFDB). Analisis 

kebolehubahan kadar jantung (HRV) dengan mesin vektor sokongan (SVM) telah 

digunakan dalam algoritma ramalan kerana kebolehpercayaannya diperhatikan dalam 

kerja-kerja terdahulu. Untuk menyiasat hubungan statistik antara semua pangkalan 

data, 65 ciri telah diekstrak daripada isyarat HRV minit pertama, kedua, ketiga dan 

keempat sebelum permulaan mVA dan sebelum tanda dua jam isyarat kawalan. 

Keputusan eksperimen menunjukkan perbezaan ketara dalam HRV isyarat mVA dan 

isyarat bukan mVA lain, termasuk enam ciri domain masa dan tujuh ciri tak linear. 

Enam kombinasi ciri daripada klasifikasi khusus segmen masa didapati berprestasi 

terbaik dalam meramalkan mVA yang akan berlaku dalam situasi bercampur dengan 

CAD dan CHF. Ketepatan tinggi 97.33% dengan sensitiviti 89.47% dan spesifisiti 

100% telah dicapai. Untuk pengelasan empat pangkalan data yang berbeza, empat 

kombinasi ciri pNN50, MaxNN dan CVI dengan CVNN, SD2, SD1a atau SDNNa 

mencapai ketepatan tinggi 98.67% dengan sensitiviti 100% dan spesifisiti 98.21%. 

Untuk penerokaan masa ramalan yang lebih awal, enam kombinasi ciri berprestasi 

terbaik dalam meramalkan mVA yang akan berlaku telah dipilih untuk klasifikasi 

pengesahan silang cuti satu keluar pada isyarat 120 minit. Prestasi seimbang dengan 

ketepatan yang agak tinggi iaitu 73.33%, kepekaan 73.68%, kekhususan 73.21% dan 

91.14 minit masa ramalan terawal dicapai dengan gabungan pNN50, SD1d, SDNNa 

dengan fungsi asas jejari (RBF) Gaussian SVM dan purata bergerak selama 15 minit.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

According to World Health Organization, 17.9 million people died from 

cardiovascular disease (CVD) in year 2019, accounting for 32% of the global deaths 

[1]. Sudden cardiac arrest (SCA) accounts for approximately 50% of all deaths 

attributed to CVD [2]. SCA is an unexpected loss in working of the heart muscles 

that may cause sudden cardiac death (SCD). In this context, malignant ventricular 

arrhythmia (mVA), which refers to a group of life-threatening heart arrhythmia 

comprising of ventricular tachycardia (VT), and ventricular fibrillation (VF) 

contributed to more than half of the SCD.  

SCD can arise with or without a history of heart disease [3]. Patients with a 

history of coronary artery disease (CAD) are, nevertheless, more likely to develop 

SCD [4]. The narrowing of coronary arteries, which reduces blood flow to the heart 

muscles, is known as coronary artery disease (CAD). This is usually caused by 

cholesterol plaque forming inside the coronary arteries as a result of an unhealthy 

lifestyle, pollution, smoking habits, or any other unknown factor [5]. If left untreated, 

CAD can lead to infarction in the coronary arteries, reducing the heart's ability to 

provide oxygenated blood to the body. Congestive heart failure (CHF) is an 

incapacity of the heart that can lead to SCA. 

An electronic defibrillator or cardiopulmonary resuscitation (CPR) may be 

used to help restore normal heart function during SCA [4]. A defibrillator is an 

electrical device that sends electrical stimulation to the heart to restore normal heart 

function. An implantable cardioverter defibrillator (ICD) may be used to treat 

patients. In ICD, electrocardiographic indicators are used to predict a future mVA 

events. Prediction of mVA events is beneficial as it enables earlier attention to the 
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patient and allow more time for medical intervention. However, ICD is expensive 

and exposes the individuals to risk of bleeding and device-related infection. Despite 

advances in signal processing techniques, there is still no optimal approach for 

forecasting deadly arrhythmic occurrences [4]. Thus, it is utmost important to 

develop accurate, reliable, and non-invasive risk assessment method for mVA events.  

Some invasive methods, such as cardiac angiography and catheterization, are 

also utilised in clinical practise to diagnose problems in heart function. However, 

patients often suffer unnecessary pain and discomfort because of the invasive 

methods. Thus, non-invasive methods should be used over invasive approaches. One 

of the most extensively utilised non-invasive ways for identifying mVA events is the 

analysis of electrocardiography-based indicators, also known as electrocardiogram 

(ECG) [6]. ECG is a graphical representation of the heart’s electrical activity, which 

is obtained through electrodes placed on the skin. During each cardiac cycle, these 

electrodes detect the tiny electrical changes that occur as a result of cardiac muscle 

depolarization and repolarization. Several cardiac disorders, including mVA, will 

induce changes in the ECG pattern, thus it is widely adopted for diagnosing CVD. 

Up to three-quarters of patients report warning symptoms such chest pain for 

a median of one hour before the SCA occurs [7]. Early medical attention after the 

emergence of warning symptoms can considerably aid in the prevention of SCD. 

However, patients may not recognise these chronic symptoms and delay the chance 

of earlier access to medical assistance. Therefore, earlier prediction of mVA using 

ECG, up to hours ahead of time, is a potentially effective prevention strategy that can 

reduce mortality due to SCA incidence by enabling patients to obtain appropriate 

medical intervention and increasing the efficiency of treatment delivery in hospital. 

Several research has been carried out to predict mVA events using various 

machine learning techniques and different feature sets. Researchers have successfully 

investigated ways to increase the performance metrics and prediction time of their 

prediction algorithms. Nonetheless, there are several enhancements that could be 

made to allow for more extensive research. In this paper, earlier prediction of mVA 

using machine learning on heterogenous databases will be discussed extensively. 
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1.2 Problem Statement 

There are three research issues discovered from previous research works. 

Firstly, previous research only shows the possibility of mVA prediction against the 

normal sinus rhythm (NSR) without taking other CVD into account [8–13]. This may 

cause false alarms to occur easily as other CVD could be very different from NSR in 

feature space. Recently, Devi et al. have proposed a novel multi-class approach for 

the prediction of mVA by comparing heart rate variability (HRV) in mVA with NSR 

and CHF [14]. After that, Rohila et al. further improved the study by including CAD 

database into the classification [15]. However, Rohila et al. only have not 

emphasized on the prediction of mVA by analysing a small duration of the HRV 

signal. 

Secondly, statistical relationship of different cardiac diseases with the 

development of mVA over time could be investigated by incorporating these 

arrhythmias in the prediction algorithm. Although Rohila et al. [15] explored on the 

multi-classes approach, but the primary objective of their study was to compare the 

HRV profile in subjects at risk of mVA. Therefore, feature selection was not applied 

in their study. However, it is undeniable that there are differences of statistical 

characteristic in feature space due to onset of mVA events and other existing cardiac 

disease. Thus, feature selection is utmost significant to allow exploration and 

investigation on the statistical relationship of different cardiac diseases to the 

development of mVA events over time. 

Thirdly, the performance of the prediction algorithms with earlier prediction 

time usually come with a lower performance metrics. Most of the previous studies 

looked at prediction time of up to thirty minutes, with accuracy of greater than 80%. 

Only few explore the earlier prediction time. Exploration of a longer signal prior to 

the mVA is advantageous for the finding of an earlier prediction time frame for early 

medical intervention. On 91-minute ECG readings, Heng [12] found that a 

combination of heart rate variability features, support vector machine classifier, and 

firing power approach obtained an overall accuracy of 89.47% and an average 

earliest forecast time of 77 minutes. This could be further validated and improved. 
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1.3 Research Objective 

This thesis aimed to develop a reliable mVA prediction algorithm with high 

performance and an earlier prediction time while taking CAD and CHF into account. 

In short, this research embarked on the following objectives: 

1. To improve the prediction algorithm in a more authentic situation mixed with 

other cardiac diseases such as CAD and CHF on multiple databases. 

2. To investigate the statistical relationship of CAD and CHF with the 

development of mVA. 

3. To validate the prediction algorithm using longer signal before mVA events 

to explore earlier prediction time. 

 

1.4 Research Scope 

Based on the research objectives, the scope of this thesis work is listed below: 

• ECG signal was the main signal used in this study and was obtained from 

PhysioBank database [16], which is publicly available to scholars around the 

world for benchmarking and comparison against previous works. The 

databases include Sudden Cardiac Death Holter Database (SDDB), MIT-BIH 

Normal Sinus Rhythm Database (NSRDB), Long Term ST Database 

(LTSTDB) and BIDMC Congestive Heart Failure Database (CHFDB). 

• This study was narrowed to long-term prediction which was prediction of 

mVAs hours in advance to enable earlier medical intervention. 

• HRV analysis with SVM were the main techniques used in this project. 

• HRV features were extracted from time-domain and nonlinear analyses. 

• Prediction time and performance metrics were used to evaluate the algorithm. 

The performance metrics included accuracy, sensitivity, and specificity. 
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1.5 Significance of Study 

With advancement of technology, ECG can be obtained easily through 

mobile devices and wearables. The prediction algorithm developed in this research 

work may be potentially implemented not only in clinical ECG monitoring system, 

but also in widely available mobile wearables to keep track of more patients at risk. 

With the earlier prediction time and more authentic situation mixed with other 

cardiovascular diseases, patients will be given more accurate warning hours before 

mVA occurrences. This may significantly improve the survival chances of a patient 

by enabling earlier diagnosis. 

 

1.6 Thesis Outline 

This thesis consists of five chapters, as outlined below. 

• Chapter 1 describes the research background, motivations, objectives and 

scopes of this research. 

• Chapter 2 starts with background knowledge on sudden cardiac death and 

cardiovascular diseases associated with it, including malignant ventricular 

arrhythmia, coronary artery disease and congestive heart failure. Then, this 

chapter reviews the previous works on prediction of mVA, CAD and CHF, as 

well as early prediction time of these diseases. 

• Chapter 3 provides an overview of the research methodology used in this 

research work. The workflows are discussed extensively. This chapter also 

introduces the research tools. 

• Chapter 4 presents the experimental results and discussion. The prediction 

time and performance of the algorithm are recorded and analysed, and then 

discussed extensively. 

• Chapter 5 concludes this thesis by summarising the research findings and 

recommendations for future research. 
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