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ABSTRACT

The demand for power sensitive CMOS designs has grown significantly due

to the fast growth of battery-operated portable applications. Design of low-power and

high-performance submicron and deep submicron CMOS circuits has become a big

challenge in nanoelectronics industries due to short-channel effect that occurs after

scaling towards nanoscale devices. Silicon-based power transistor devices has low

power consumption which allows more components per chip surface area. But

silicon-based short-channel devices has generated DIBL effect, hot carriers’ effect

and surface scattering, results in device performance degradation. To overcome these

unwanted effects, carbon nanotube-based devices has shown the potential to replace

silicon-based devices by sustaining the requirements of a high-speed nano-

dimensional devices because it has similar device operation with CMOS and

produces lower leakage power than silicon-based devices. Differential amplifier

circuit topology is applied in this research because it is a very useful operational

amplifier circuit to examine the performance differences between carbon nanotube

and conventional silicon when they are used as channel material by evaluating

Common-Mode Rejection Ratio (CMRR) of differential amplifier. The objective of

this research is to study the performance of Carbon Nanotube based differential

amplifier based on CMRR and to compare the performance of Carbon Nanotube

based differential amplifier with the silicon based differential amplifier. HSPICE tool

is used in this research to simulate the differential amplifier circuit with current

mirrors active load configuration to maintain the voltage gain for single-ended output,

which is built using netlists of SPICE CNFET model and PTM model, respectively.

From the research findings, the highest CMRR of CNFET-based differential

amplifier with constant input DC offset voltages in differential mode and common

mode is 72.68 dB. When input DC offset voltages in differential mode and common

mode decreases, CNFET-based differential amplifier has achieved CMRR of 92.16

dB, which increases by 26.8% compared to that of constant input DC offset voltages.

The CMRR of MOSFET-based differential amplifier (21.83 dB) is smaller than the

CMRR of CNFET-based differential amplifier (132.02 dB), with a difference of

110.19 dB or 143.2% .
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ABSTRAK

Permintaan terhadap reka bentuk CMOS yang bersensitif kuasa telah

mengalami pertumbuhan yang ketara disebabkan oleh pertumbuhan aplikasi

pengendalian bateri yang cepat. Reka bentuk submikron litar CMOS yang berkuasa

rendah dan berprestasi tinggi merupakan cabaran yang besar dalam industri

nanoelektronik disebabkan oleh kesan saluran pendek selepas menjadi skala nano.

Peranti transistor kuasa yang diperbuat daripada silikon mempunyai penggunaan

kuasa yang rendah dan membenarkan lebih banyak component dalam kawasan

permukaan cip. Walau bagaimanapun, peranti transistor silikon ini telah

menghasilkan banyak kesan buruk dan merendahkan prestasi peranti transistor. Bagi

menyelesaikan kesan-kesan ini, tiub nano karbon berpotensi tinggi untuk

menggantikan silikon bagi mengekalkan keperluan peranti skala nano kerana tiub

nano karbon berfungsi serupa dengan CMOS dan menghasilkan kebocoran kuasa

yang rendah berbanding dengan peranti silikon. Kajian ini bertujuan menilai prestasi

Common-Mode Rejection Ratio (CMRR) daripda litar penguat kebezaan

menggunakan tiub nano karbon sebagai bahan saluran dan membandingkan dengan

litar penguat kebezaan menggunakan silikon sebagai bahan saluran. Alat simulasi

HSPICE digunakan dalam kajian ini untuk menjalankan simulasi litar penguat

kebezaan dengan konfigurasi litar beban aktif untuk mengekalkan keuntungan voltan

tinggi kepada isyarat input pembezaan dan keluaran hujung tunggal berdasarkan

model dan netlist yang berbeza untuk tiub nano karbon (CNFET) dan silikon

(MOSFET). Berdasarkan carian dalam penyelidikan ini, nilai CMRR paling tinggi

yang dicapai oleh litar penguat kebezaan CNFET yang mempunyai voltan DC yang

tetap dalam differential mode dan common mode ialah 72.68 dB. Apabila voltan DC

dalam differential mode dan common mode menigkat, litar penguat kebezaan CNFET

mencapai CMRR sebanyak 92.16 dB yang memberi peingkatan sebanyak 26.8%

berbanding dengan nilai CMRR dalam voltan DC yang tetap. Litar penguat kebezaan

MOSFET (21.83 dB) mempunyai nilai CMRR yang lebih kecil daripda litar penguat

kebezaan CNFET (132.02 dB). Perbezaan ialah 110.19 dB atau peratusan perbezaan

sebanyak 143.2%.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

According to Moore’s law, the number of transistors in an integrated circuit

will double every two years [1]. This theory of technology scaling on transistors was

introduced by Gordon Moore in year 1965, and this theory has become the driving

force behind the semiconductor technology at Intel [1]. Technology scaling is the

reduction of horizontal and vertical dimensions of the transistor chip along with the

reduction of supply voltage ��� , which reduces the power dissipation and overcome

the oxide breakdown [2]. Threshold voltage will be reduced proportionally under this

condition to balance the output of the transistor. However, narrow oxide thickness

and low threshold voltage will give an increment in gate leakage and subthreshold

leakage current, which causes leakage power to be the highest contributor to the chip.

The continuous downscaling of the devices has reduced the number of dopants, cut

down the cost of doping in CMOS devices and provide higher functional density.

The major challenges nowadays for semiconductor industry at the nanoscale design

is to reduce dynamic and leakage power and prolong the lifetime of the transistors [2]

because both dynamic and leakage power minimization are equally important for

nanoscale design. To overcome this scaling limitation, Carbon Nanotube Field Effect

Transistor (CNFET) is a promising non-planar transistor to replace classical

conventional Metal Oxide Semiconductor (CMOS) technology which uses Metal

Oxide Semiconductor Field Effect Transistor (MOSFET).

In MOSFET, channel length has played an important role in its functioning.

For long channel devices, the source and drain are linked by long channel length

whereas short channel devices link the source and drain with short channel length.

Short-channel MOSFET has a good processing speed and low operating potential is

needed which can improve transistor density on a single chip [2]. But the influence

of short channel effect and abrupt rise in subthreshold leakage current has degraded

the device performance due to downscaling in dimensions of transistors to micro or
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nano level [2]. Increase in leakage current has resulted in huge power dissipation due

to Drain Induced Barrier Lowering (DIBL) effect. DIBL is the differences in

threshold voltages when the drain current varies from 0.1 V to 1 V. It estimates the

overall gate control of the device on the channel electrostatics of the device. The

thickness of the oxide layer in MOS needs to be reduced to overcome DIBL effect

but this will increase the leakage due to Gate Induced Drain Leakage (GIDL) [3]. To

reduce the GIDL, it needs high and abrupt drain doping which helps reducing series

resistance to attain high transistor drive current. Therefore, CNFET is used because

carbon nanotubes allow reduction of short channel effect and as it has higher electric

field density, leads to lower DIBL and off current [4].

In CNFET, it exhibits quantum mechanical process of carrier transport

properties and allows ballistic transport at room temperature due to comparable sizes

of medium length and mean free path of carriers, which leads to higher current

densities [4]. Several desirable properties that CNTs possess include a high thermal

conductivity, high electrical mobility, high electrical current capacity, high tensile

strength, small size, compatibility with current semiconductor fabrication processes,

and ability to be functionalized [5]. The diameter of carbon nanotube is mentioned in

terms of a chirality vector [6]. The arrangement is specified in terms of an index (n,

m) where m, n is the pair of integers that express its chirality vector. Chirality vectors

of carbon nanotubes are inversely proportional to the threshold voltage, ��ℎ of

CNFET [7]. Nanotubes can significantly reduce the DIBL effect and subthreshold

swing in silicon channel replacement while sustaining smaller channel area at higher

current density due to related high field effects in carbon nanotubes. The

performance of a carbon nanotubes channel is enhanced when the source or drain

width is minimized rather than the channel length due to gate to source or drain

parasitic fringe capacitances. CNFET utilizes semiconducting single-walled carbon

nanotubes to assemble electronic devices like MOSFET [8]. Single-walled carbon

nanotubes (SWCNTs) have very interesting band structures. Its electronic properties

can be metallic or semiconducting, made carbon nanotubes a strong competitor to

silicon-based devices [9]. It has interesting structural qualities such as no surface

roughness scattering and electrostatic properties such as ballistic transport. However,

the fabrication of carbon nanotubes is still a complicated process with the current

technology as obstacles remain in controlling proper chirality, specific and precise
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nanotube separation, and surface state control [9]. So, SPICE simulation for carbon

nanotubes device is focused on this research.

In this research, the comparative performance analysis between MOSFET

and CNFET using single-stage differential amplifier will be presented. Differential

amplifier is a base component in many types of active circuits [10], and it is the

foundation for most operational amplifier designs [11]. A differential amplifier

amplifies the difference between two separate input voltages for basic MOS

differential-pair differential amplifier, it uses a pair of MOSFET to amplify the

difference in voltage between gate-to-source voltages of both transistors. Current

mirror is used to maintain the gain of the differential amplifier with two differential

input voltages. For CNFET-based differential amplifier, specific device parameters

such as number of nanotubes (N), inter nanotube spacing pitch (S), diameter of CNTs

(D), and input supply voltage (V) are adjusted to give different threshold voltages [6].

1.2 Problem Statement

Over the past few years, researchers have encountered problems in present

silicon-based transistors after further scaling down the device. The problems are

related to fabrication technology and device performance with the shrinking down in

the device dimension to meet the nanoscale design requirement. Limitations in

fabrication such as electron tunnelling through short channel effect and thin insulator

films, and device performance degradation due to associated leakage currents,

passive power dissipation, device structure mismatching, mobility degradation and

random doping fluctuation.

MOSFET was introduced to be used as power transistor device in VLSI

circuit after BJT has found to have static power dissipation. MOSFET has lower

power consumption to allow more components per chip surface area. However,

MOSFET-based short channel devices has some restrictions such as DIBL effect,

surface scattering and hot carrier effect, which resulting in device degradation.

To overcome these drawbacks, carbon nanotube-based devices has shown the

potential to sustain the requirements of a high-speed nano dimensional device in the

future because it has similar device operation with CMOS and can produce lower
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leakage power with continued device downscaling to sustain the continuity of the

nanoelectronics VLSI manufacturing technology progress as compared to silicon-

based devices.

Carbon nanotube is one of the suggested materials to replace silicon as

outlined in International Roadmap for Devices and Systems (IRDS). The dimensions

of carbon nanotube are very sensitive to its electrical performance. Therefore, it is

necessary to study the effect of its dimensions for the application of differential

amplifier The performance of differential amplifier particularly based on Common-

Mode Rejection Ratio (CMRR) when the channel material is replaced with carbon

nanotubes will be studied in this research.

1.3 Research Objectives

Existing works have studied on the performance of Carbon Nanotube based

Differential Amplifier. However, the works only focused on fixed dimensions of

carbon nanotube. It is necessary to investigate the effect of various dimensions of

carbon nanotube on the performance of differential amplifier. Therefore, it will be

studied in this research. The objectives of the research are:

(a) To study the performance of Carbon Nanotube based Differential Amplifier

based on Common-Mode Rejection Ratio (CMRR).

(b) To compare the performance of Carbon Nanotube based Differential

Amplifier with conventional silicon material.
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1.4 Research Scopes

The following are the scopes for this research:

(a) The circuit design and simulation will be using HSPICE tool.

(b) The 32 nm CNT SPICE model used is adopted from Stanford CNT SPICE

model [12].

(c) The comparison using the conventional silicon material with 32 nm

technology node is adopted from PTM model [13].

(d) The performance of the differential amplifier focuses on the Differential

mode gain (Adm ), Common mode gain (Acm ) and Common-Mode Rejection

Ratio (CMRR).

(e) The channel length of the CNFET and MOSFET is 32 nm.

(f) The radius of carbon nanotube will be varied from 0.5 nm to 1.5 nm.

(g) The pitch of carbon nanotube will be varied from 16 nm to 20 nm.

(h) The number of channels in CNFET is 1, 2 and 3.
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