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ABSTRACT 

Tapered single mode fiber (SMF) immobilized with glucose oxidase enzyme 

(GOD) and gold nanoparticles (AuNP) for recognition of glucose and sucrose, 

respectively have been proposed in this work. Tapered fiber is fabricated using flame 

heating technique and is coated to improve the sensitivity of fiber based sensor. 3-

(aminopropyl) triethoxysilane (APTES), GOD and AuNP are functionalized onto the 

tapered region of SMF through covalent interaction. The purpose of this study is to 

develop coated tapered fiber for determining the sensitivity and selectivity of glucose 

and sucrose in different concentration of glucose and sucrose solutions and in 

different types of Daucus carota. Solution concentration of 0.1 g/ml, 0.2 g/ml and 

0.3 g/ml were used to differentiate the spectrum intensity of the fiber towards 

different amount of glucose and sucrose in the solutions. Baby carrots, imported 

carrots and organic carrots were used as an indicator to prove the existence of 

glucose and sucrose in these different types of Daucus carota. The experimental 

results demonstrate the sensitivities of GOD-immobilized fiber were 0.01045     

     , 0.11415       , 0.12689        and 0.16807        towards glucose 

solution, baby carrots, organic carrots and imported carrots, respectively. Meanwhile, 

the sensitivities of AuNP-immobilized fiber towards sucrose solution, baby carrots, 

imported carrots and organic carrots were 0.00840          , 0.000483       , 

0.000698        and 0.000777       , respectively. The slopes obtained from the 

graph represent the sensitivities of the fibers towards different types of testing 

samples. 
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ABSTRAK 

Serat mod tunggal tirus (SMF) yang diimobilisasi dengan enzim glukosa 

oksidase (GOD) dan nanopartikel emas (AuNP) untuk pengiktirafan glukosa dan 

sukrosa, masing-masing telah dicadangkan dalam karya ini. Serat tirus dibuat 

menggunakan teknik pemanas api dan dilapisi untuk meningkatkan kepekaan sensor 

berasaskan serat. 3- (aminopropil) triethoxysilane (APTES), GOD dan AuNP 

difungsikan ke kawasan SMF yang meruncing melalui interaksi kovalen. Tujuan 

kajian ini adalah untuk mengembangkan serat tirus bersalut untuk menentukan 

kepekaan dan selektivitas glukosa dan sukrosa dalam kepekatan larutan glukosa dan 

sukrosa yang berlainan dan dalam pelbagai jenis Daucus carota. Kepekatan larutan 

0.1     , 0.2      dan 0.3      digunakan untuk membezakan intensiti spektrum 

serat terhadap jumlah glukosa dan sukrosa yang berlainan dalam larutan. Lobak bayi, 

wortel yang diimport dan wortel organik digunakan sebagai petunjuk untuk 

membuktikan kewujudan glukosa dan sukrosa dalam berbagai jenis karot Daucus. 

Hasil eksperimen menunjukkan kepekaan serat yang tidak bergerak GOD adalah 

0.01045          , 0.11415       , 0.12689        dan 0.16807        terhadap 

larutan glukosa, wortel bayi, wortel organik dan wortel import, masing-masing. 

Sementara itu, sensitiviti serat yang tidak bergerak AuNP terhadap larutan sukrosa, 

wortel bayi, wortel import dan wortel organik adalah 0.00840          , 

0.000483       , 0.000698        dan 0.000777       , masing-masing. Lereng 

yang diperoleh dari grafik mewakili kepekaan serat terhadap pelbagai jenis sampel 

ujian.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Developing high precision or more accurate sensing devices with low limit of 

detection (LOD) recently has become favourable in various range of applications and 

studies due to its advantages. Fiber optic sensors have various benefits including 

highly sensitive, light weight, small size, resistant to high temperature, multiplexing, 

and high geometrical abilities [1]. 

Fiber optic sensor is a device which uses optical fiber as the sensing element, 

or by means of carrying signals from remote sensor to electronic devices that process 

the signals. The excellent features of optical fibers such as finest light transmission, 

easy enhancement of the bio-reaction, long distance signal delivery, economical, and 

low attenuation allow fiber optic sensor to be widely used in the implementation of 

numerous application areas [1]. 

These features are beneficial to different potential applications in optical fiber 

based sensor for detection of quantities such as temperature, mechanical strain, 

humidity, pressure, vibration measurements, velocity, displacements, liquid level 

measurement [2], acceleration calibration, and also bio-chemical measurements such 

as sugar content and pH value [3]. 

For insensitive circumstances which include noise, high vibration, extreme 

heat, wet and ambiguous conditions, the fiber optic sensors can act predominantly. 

These sensors can easily fit in smaller regions and can be located perfectly wherever 

flexible fibers are needed. Thus, fiber optic sensors can also be designed to tolerate 

high temperatures [3].  
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Optical fiber based sensor has a fiber optic components that connects to a 

light source to allow detection or sensing in tight spaces or small profiles. The optical 

fiber typically consists of a silica core surrounded by a transparent layer of silica or 

plastics cladding material, with a lower refractive index (RI) than the core RI [4]. 

The difference in RI between the core and cladding enables them to act based on the 

total internal reflection principle (TIR). TIR states that when the light strikes an 

interface at a sufficiently oblique angle between two media, it will be totally 

reflected without energy loss [5]. 

Tapered fiber using single mode fiber (SMF) provides some excellent 

characteristics of fiber optic sensor. Smaller core diameter of SMF able to reduce 

distortion that comes from overlapping light transmission. This reason will result in 

SMF overcoming high signal attenuation and low transmission speeds to reduce data 

loss. Multimode fiber (MMF) also often used in sensing technology. However, MMF 

is suitable for short distance application because the multiple light that propagates 

along MMF tend to disperse over long distances. 

In 2018, a work by Chen demonstrated a glucose sensor of both AuNP and 

GOD immobilized onto the surface of U-shaped optical fiber probe [6]. The fiber is 

first fabricated using a flame heating technique and this sensor practically works to 

measure different concentration of glucose solution and the fiber. From this work, it 

shows that when the glucose concentration increased, the refractive index of the 

sensor decreases and thus, spectrum wavelength shifted. 

In other works, GOD has been immobilized onto an optical fiber microprobe 

by modifying the surface of fiber optic with APTES for bio-selective and high-

sensitive glucose recognition at different concentrations. This findings proved its 

potential for label-free sensing capacity, excellent practicality, and higher sensitivity 

due to its small in size [7,8]. 
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1.2 Problem Statement 

Sugar monitoring sensor which have been designed since decades ago by 

electrochemical method limits the sensing applications because it is highly cost and 

time consuming during preparation [9]. Electrochemical method is an approach to 

prepare coatings by controlling voltage, electro deposition time, and concentration of 

the electrolyte, and monomers [10]. For the reason, this research focused on an easy 

fabrication and low cost for measurement of corresponding substances. 

Standard optical fiber performed zero sensitivity towards its surrounding 

medium and cannot be utilized for specific measurement of substances because of its 

optical field completely confined in the fiber core. Hence, tapering and coating with 

enzyme and metallic nanoparticles provides several benefits including high 

selectivity, biocompatibility, and good chemical stability [11]. 

Excessive sugar intake will result in many chronic diseases that deteriorates 

human health including weight gain, kidney disease, mental health, tooth decay, and 

so on [12]. Carrots are definitely a preferable vegetable that is claimed to be a 

healthy food among adults and children due to their number of benefits including low 

risk of cancer and heart disease, decrease calorie intake, lower cholesterol levels and 

improved eye health [13]. 

However, excessive consumption of carrots over a period of time can bring in 

too much beta-carotene, the molecule which responsible for carrots’ bright orange 

hue and precursor of vitamin A. Carotenemia is a condition which occurs due to 

carotene, a fat-soluble molecule [13]. High carrots intake tend to accumulate in the 

outermost layer of skin which resulting in yellow or orange pigmented skin. 

Therefore, this research helps to identify the sensitivity of the fiber towards different 

types of Daucus carota or carrots in order to determine the amount of sugar 

composition inside this corresponding substances and so avoid a high consumption 

of sugar.  
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1.3 Research Objectives 

The main objective of this research is to develop a functionalized tapered 

SMF for glucose and sucrose detection. The specific objectives of this research 

includes: 

(i) To optimize the tapered fiber structure for better sensing properties. 

(ii) To determine and characterize the surface characteristics of immobilized 

tapered optical fiber. 

(iii) To measure the sensitivity and selectivity of sensor towards glucose and 

sucrose in different type of Daucus carota. 

(iv) To identify the sensitivity and selectivity of sensor towards different 

concentration of glucose and sucrose solutions. 

1.4 Scopes of Research 

This research is focusing on the potential of tapered fiber optic immobilized 

with glucose oxidase enzyme (GOD) and gold nanoparticles (AuNP) for the 

recognition of glucose and sucrose sensing. In this study, SMF tapered fiber with 

waist diameter of 20    is fabricated using flame heating technique. One end of the 

immobilized fiber is connected to halogen light source model HL-2000-LL for 

measurements between 360 to 2400 nm respectively. The other end is connected to 

the CCS175/M compact spectrometer from Thor Labs which provides intensity 

signal of the functionalized fiber in the range of 500 to 1000 nm. The spectrometer is 

then connected to Thor Labs software which displays various spectrum intensities at 

different wavelength. Different concentration of glucose and sucrose solutions used 

in this work are 0.1     , 0.2     , and 0.3      and different types of Daucus 

carota which are baby carrots, imported carrots, and organic carrots. 
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1.5 Significance of Research 

In this research works, a better understanding of glucose and sucrose 

detection using immobilized tapered fiber was studied for the implementation of high 

quality sensor based on fiber optic. Fabrication of tapered fiber with flame brushing 

technique is one of the most economical and versatile method to fabricate fiber with 

an excellent physical characteristics. Features of tapered fiber were studied deeply 

for clearer picture in order to produce good fiber based sensor.  

In addition, this study will enhance the selectivity and sensitivity of the fiber 

towards glucose and sucrose by immobilizing the fiber with enzyme and metallic 

nanoparticles. Different concentration of glucose and sucrose solutions and different 

types of Daucus carota which used as testing samples were the key factor in 

determining glucose and sucrose level using immobilized tapered fiber. In this work, 

fiber coatings using enzyme and metallic nanoparticles which immobilized onto the 

surface of tapered fiber were also considered for better knowledge. 
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