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ABSTRACT 

Tunnel Field -Effect Transistor (TFET) has been known as one of the 

promising devices which will be replacing Conventional Metal Oxide Semiconductor 

Field-Effect Transistor (MOSFET) as a future low-power and high-speed logic 

application. This is because as the size of MOSFET reduce decade by decade, to 

achieve better speed and lower power, and currently moving towards the nanometer 

regime, has leads to the limitation of the performance of MOSFET. These few 

bottlenecks such as increasing of leakage current, Short Channel Effects (SCEs) and 

complexity in device fabrication have been faced while scaling down the size of 

MOSFET. Therefore, TFET which work on principle of tunnelling phenomenon has 

been proposed as one of the devices to replace MOSFET which work on the principle 

of thermionic emission that limits the device’s sub-threshold swing to 60mV/decade. 

TFET has various of features such as immunity from most of the Short Channel 

Effects, lower leakage current, lower sub-threshold swing which is below 60mV/dec, 

lower threshold voltage and higher OFF current over ON current ratio. However, there 

are also some drawbacks for TFET such as complexity of fabrication process in doped 

TFET which cause various defects. These can be overcome by using dopingless 

technique. This technique helps in producing defects-less and more economical 

devices. Another drawback would be TFET exhibits lower ON state current. 

Heteromaterial TFET can be used to solve the low Ion issue. To have a better 

controllability of heteromaterial TFET channel, dual gate is proposed. Sub-threshold 

swing (SS) is one of the important parameters to determine a device performance. By 

lowering the SS, the device performance will be better in term of lower leakage 

current, better Ion/Ioff ratio and lesser energy. There are 3 objectives for this project: 

To model and simulate Heteromaterial Dual-gate Dopingless TFET (HTDGDL-

TFET). To compare the performance of TFET between Ge, Si and GaAs as Source 

region material. To apply the HTDGDL-TFET as a Digital Inverter. This project will 

be simulated using Silvaco TCAD tool. Single-Gate and Double-Gate HTDL-TFET 

has been successfully modelled. 4 simulation test cases have been done for this project 

to select the best structure of proposed TFET. Several important parameters such as 

Vth, SS, Ion, Ioff and Ion/Ioff ratio are used to measure the performance of TFET. 

Among all of the 4 test cases, the best TFET structure is with Ge as source region 

material, source and drain region carrier concentration of 1 × 1019 𝑐𝑚−3and channel

carrier concentration of 1 × 1017 𝑐𝑚−3and dopingless. This is because the device

shows Vth value of 0.97V, SS value of 15mV/dec, and Ion/Ioff ratio of 7 × 1011. The

propagation delay for designed TFET inverter is 75 times shorter than the inverter from 

[21] and is 29 times shorter than the market inverter [SN74AUC1G14DBVR]. Some

future works also have been suggested in this thesis.
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ABSTRAK 

Transistor Kesan Medan Terowong (TFET) telah dikenali sebagai salah satu 

peranti menjanjikan yang akan menggantikan Transistor Kesan Medan 

Semikonduktor Oksida Logam Konvensional (MOSFET) sebagai aplikasi logik 

berkuasa rendah dan berkelajuan tinggi pada masa hadapan. Ini kerana apabila saiz 

MOSFET mengurangkan dekad demi dekad, untuk mencapai kelajuan yang lebih 

baik dan kuasa yang lebih rendah, dan kini bergerak ke arah rejim nanometer, telah 

membawa kepada pengehadan prestasi MOSFET. Beberapa kesesakan ini seperti 

peningkatan arus kebocoran, Kesan Saluran Pendek (SCE) dan kerumitan dalam 

fabrikasi peranti telah dihadapi sambil mengecilkan saiz MOSFET. Oleh itu, TFET 

yang berfungsi pada prinsip fenomena terowong telah dicadangkan sebagai salah satu 

peranti untuk menggantikan MOSFET yang berfungsi berdasarkan prinsip pelepasan 

termionik yang akan mengehadkan sub-ambang buai peranti kepada 60mV/dekad. 

TFET mempunyai pelbagai ciri seperti imuniti daripada kebanyakan Kesan Saluran 

Pendek, arus bocor yang lebih rendah, sub-ambang buai yang lebih rendah iaitu di 

bawah 60mV/dis, voltan ambang yang lebih rendah dan arus OFF yang lebih tinggi 

berbanding nisbah arus ON. Namun begitu, terdapat juga beberapa kelemahan bagi 

TFET seperti kerumitan proses fabrikasi dalam TFET doped yang menyebabkan 

pelbagai kecacatan, ini boleh diatasi dengan menggunakan teknik tanpa doping. 

Teknik ini membantu dalam menghasilkan peranti yang kurang kecacatan dan lebih 

menjimatkan. Kelemahan lain ialah TFET mempunyai arus keadaan ON yang lebih 

rendah. TFET Heteromaterial boleh digunakan untuk menyelesaikan isu Ion rendah. 

Untuk mempunyai kebolehkawalan saluran TFET heteromaterial yang lebih baik, dwi 

gerbang dicadangkan. Sub-ambang buai (SS) ialah salah satu parameter penting untuk 

menentukan prestasi peranti. Dengan menurunkan SS, prestasi peranti akan menjadi 

lebih baik dari segi arus bocor yang lebih rendah, nisbah Ion/Ioff yang lebih baik dan 

tenaga yang lebih rendah. Terdapat 3 objektif untuk projek ini: Untuk memodelkan 

dan mensimulasikan TFET Heteromaterial Dual-pintu Tanpa Doping (HTDGDL-

TFET). Untuk membandingkan prestasi TFET antara Ge, Si dan GaAs sebagai bahan 

rantau Sumber. Untuk menggunakan HTDGDL-TFET sebagai Penyongsang Digital. 

Projek ini akan disimulasikan menggunakan alat Silvaco TCAD. Satu-Pintu dan 

Dual-Pintu HTDL-TFET telah berjaya dimodelkan. 4 kes ujian simulasi telah 

dilakukan untuk projek ini untuk memilih struktur terbaik TFET yang dicadangkan. 

Beberapa parameter penting seperti nisbah Vth, SS, Ion, Ioff dan Ion/Ioff digunakan 

untuk mengukur prestasi TFET. Di antara kesemua 4 kes ujian, struktur TFET terbaik 

ialah dengan Ge sebagai bahan kawasan sumber, kepekatan pembawa kawasan 

sumber dan longkang sebanyak 1 × 1019 𝑐𝑚−3 dan kepekatan pembawa saluran 1 × 
1017 𝑐𝑚−3 dan tanpa doping. Ini kerana peranti menunjukkan nilai Vth 0.97V, nilai 

SS 15mV/dec, dan nisbah Ion/Ioff 7 × 1011. Kelewatan perambatan untuk 

penyongsang TFET yang direka adalah 83.8ps iaitu kira-kira 75 kali lebih pantas 

daripada penyongsang dari [21] dan 29 kali lebih pantas daripada penyongsang 

pasaran [SN74AUC1G14DBVR]. Beberapa karya akan datang juga telah 

dicadangkan dalam tesis ini.
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Since 1960s, Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) 

has been widely used as a low power and high-speed logic application. Size of 

MOSFET also has been minimizing over half decade of century in the past and 

currently moving towards to nanometer regime. The continuous size reduction of 

MOSFET has helped in building faster IC which consumed lower power as compared 

to larger size MOSFET.  

In nanometer regime, besides the bright side which MOSFET able to include 

large amount of functionality in Integrated Circuit [IC], it also leads to several 

downside. Due to the continuous reduction of MOSFET size until nanometer, it leads 

to limitation of the performance of MOSFET and faces several bottlenecks. Increasing 

of leakage current is one of the bottlenecks that have been faced in reduction of 

MOSFET size. Various Short Channel Effects (SCE) and complexity of device 

fabrication process has become more obvious when MOSFET come to nanometer size. 

Besides that, the power dissipation has also been increasing when scaling down the 

size of MOSFET. 

Tunnel Field-Effect Transistor (TFET) which works on principle of tunneling 

phenomenon has been proposed as one of the devices to replace MOSFET which work 

on principle of the thermionic emission. This is because TFET has numerous features 

or advantages that can overcome the bottlenecks that are faced in MOSFET. For 

example, TFET has immunity from SCEs, have low leakage current, low threshold 

voltage, low Sub-threshold Swing (SS) that is below 60mV/dec and it also have high 



 

2 

 

ON current over OFF current ratio (
𝐼𝑜𝑛

𝐼𝑜𝑓𝑓
). Besides the advantages of TFET, there are 

also some drawbacks for TFET such as fabrication process is complex in doped TFET 

which will cause various defects, and it also have low ON state current.  

Figure 1.1 shows the structure of MOSFET and TFET and each of their 

corresponding energy band diagram. By comparing the structure of MOSFET and 

TFET, MOSFET is N-type – P-type – N-type (N-P-N) whereas TFET is P-type – 

Intrinsic – N-type (P-I-N). Then from energy band diagram, MOSFET is using 

Thermionic Emission principle whereas TFET is using Band-to-Band Tunneling 

principle.  

               

Figure 1.1 Structure and energy band diagram of (a) MOSFET (b) TFET [28] 

                     

 Sub-threshold Swing (SS) is one of the important parameters to determine the 

performance of an FET. A low Sub-threshold Swing value indicates the device having 

low leakage current, better 
𝐼𝑜𝑛

𝐼𝑜𝑓𝑓
, and have lesser energy. Therefore, it is important to 

characterize the SS properties of a device.  

 

(b) (a) 
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1.2 Problem Statement 

As mentioned in previous chapter “Problem Background”, there are some 

drawbacks of TFET. One of the drawbacks of TFET is the complexity of fabrication 

process in doped TFET. This leads to various defects to occur in the device and also 

will cause the cost of the device to increase. This drawback can be overcome by using 

dopingless technique. This technique has a simpler fabrication process which can help 

in producing more economical and defect-less devices. Besides that, another drawback 

of TFET is low ON state current. This issue can be solved by using heteromaterial 

TFET.  

Another problem statement is, according to [9], material used in heteromaterial 

TFET will affect the performance of TFET. With smaller bandgap material in source 

region, the Band-to-Band Tunnelling efficiency will be higher, which will help to 

improve the performance of TFET.  

In addition, most of the studies in TFET are only on device level and it is rarely 

on circuit / logic level. Therefore, this cause the circuit performance of TFET hard to 

be analyzed.  

1.3 Research Objectives 

The objectives of the research are: 

(a) To model and simulate Heteromaterial Dual-gate Dopingless TFET 

(HTDGDL-TFET) in TCAD simulation tool.  

(b) To compare the performance of TFET between Ge, Si and GaAs as Source 

region material. 

(c) To apply the HTDGDL-TFET as a digital inverter. 
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1.4 Motivation 

Most of the studies which related to TFET are only in one aspect for example 

either in dopingless TFET, or Dual-gate TFET. Rarely the studies are in 

Heteromaterial Dual-gate Dopingless TFET. Besides, by comparing different source 

region material in TFET, the effect of the performance of TFET due to will be affected 

by the different material can be determined. Last but not least, circuit performance of 

TFET is hard to be analyzed if it is only on logic level. So, the proposed design will 

be applied as a Digital Inverter to analyze its circuit performance. 

1.5 Research Scopes 

Study of Tunnel Field Effect Transistor includes a very huge field of study. 

There are many types of TFET such as Vertical TFET, Feedback TFET, 

Heterojunction TFET, Dopingless TFET, Junctionless TFET and so on. Nevertheless, 

this project will only be focus on Heteromaterial Dual-Gate Dopingless TFET.  

Below are the scopes for this project: 

1. This project will focus on modelling and simulating Heteromaterial Dual-gate 

Dopingless TFET (HTDGDL-TFET). 

2. Germanium, Ge, Silicon, Si and Gallium Arsenide, GaAs will be used and 

compare as material in source region. 

3. Parameters which will be compared are Threshold voltage (𝑉𝑡ℎ), Sub-threshold 

Swing (𝑆𝑆), On state Current (𝐼𝑜𝑛), Off state Current (𝐼𝑜𝑓𝑓) and 𝐼𝑜𝑛  over 𝐼𝑜𝑓𝑓 

ratio. 

4. The proposed structure is applied as a digital inverter and its circuit performance 

which are propagation delay (𝑡𝑝), 𝑡𝑝𝐻𝐿, 𝑡𝑝𝐿𝐻 are analysed.  

5. This project will be modelled and simulated using Silvaco TCAD Tool. 
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