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ABSTRACT 

This study was performed to determine and evaluate the performance of the 

graphene-based electromyogram sensor as an alternative to silver/silver chloride 

(Ag/AgCl) electrode for data acquisition. The main advantage of using graphene 

electrode is that it is more comfortable for sensitive skin, reusable and convenient. An 

experiment to capture the changes of biceps brachii and triceps brachii during flexion 

and extension was conducted to test the performance of graphene electrode over 

Ag/AgCl electrode. The test measurement was carried out using a portable surface 

electromyography (sEMG). MATLAB software was used to process the acquired 

signals and analysed its signal-to-noise ratio (SNR) of both electrodes. In addition, 

SPSS software was used to determine the significant different of both electrodes and 

to measure the agreement level of both acquired data by using Bland Altman (BA) 

analysis plot. At 1kg load, graphene electrode’s SNR = 27.081 dB from biceps brachii, 

SNR = 23.709 dB from triceps brachii. Meanwhile, Ag/AgCl electrode get SNR = 

24.932 dB from biceps brachii, SNR = 24.348 dB from triceps brachii. Besides that, it 

shows agreement of 100 % between both electrode’s performance when using BA 

analysis. This shows that both electrodes are statistically comparable in terms of SNR, 

and the graphene electrode are able to perceive 100 % of Ag/AgCl electrode to the 

standard reading of EMG. The solution presented in this study could be a key factor 

for continuous innovation to increase user comfort and save earth from electrode 

waste.  
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ABSTRAK 

Kertas kerja ini dilakukan untuk mengkaji prestasi penderia 

elektromiogram berasaskan graphene sebagai alternatif setanding kepada 

elektrod Ag/AgCl menggunakan sistem pemerolehan data. Kelebihan utama 

elektrod graphene adalah selesa, boleh diguna semula dan mudah. Untuk 

menguji prestasi elektrod ini, eksperimen menangkap perubahan otot biceps 

brachii dan otot triceps brachii semasa aktiviti fleksi dan lanjutan dijalankan. Ujian 

ini dijalankan dengan menggunakan SPSS dan MATLAB untuk mengkaji nisbah 

isyarat-ke-bunyi (SNR) dan plot Bland Altman bagi kedua-dua elektrod. Kaedah 

terperinci untuk pengukuran ujian sEMG dan pemprosesan isyarat juga akan 

dibincangkan. Pada beban 1kg, elektrod graphene mendapat SNR=27.08 dB 

daripada bicep brachii, SNR=23.709 dB daripada tricep brachii. Sementara itu, 

elektrod Ag/AgCl mendapat SNR=24.932 dB daripada bisep brachii, SNR=24.348 

dB daripada tricep brachii. Selain itu, ia menunjukkan persetujuan 100 % 

antara prestasi kedua-dua elektrod apabila menggunakan analisis Bland Altman. Ini 

menunjukkan bahawa kedua-dua elektrod adalah setanding secara statistik dari segi 

SNR, dan elektrod graphene dapat 100 % persamaan dengan elektrod Ag/AgCl 

dalam bacaan standard EMG. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of study 

Electromyography (EMG) is a tool used to measure the electrical activity of 

skeletal muscles. It has a wide range of uses, such as in the human machine interaction, 

clinical and biomedical applications. Clinical applications of EMG as an evaluation 

tool, include the kinesiology, assessment of low back pain, neuromuscular diseases 

and disorders of motor control (Reaz et al., 2006). Besides that, EMG also very useful 

for the therapy of prosthetic patients (Mulas et al., 2005; Al-Jumaily and Olivares, 

2009). Meanwhile, human machine interface applications refers to any device that 

controlled by human such as drones and robots (Kiguchi and Hayashi, 2012; Jeong et 

al., 2013; Rangwani and Park, 2019). 

To track the EMG signals, biopotential electrodes are used, which can be 

divided into invasive (using wire/needle electrode) and non-invasive (sensor and 

electrode are placed on the body surface). For the invasive electrodes, the intracellular 

and extracellular fluids act as an electrolytic medium to enhance the signal acquisition. 

Normally, this implementation needs guidance of a trained professional, because the 

requiring of electrodes to insert into the skin. Meanwhile, for the non-invasive 

electrodes, electrolytic gel might or might not be applied. Those that can be used 

without the electrolytic gel, were classified as dry contact electrodes (Alizadeh-

Meghrazi et al., 2021). Basically, the non-invasive method, measured by surface EMG 

signals (sEMG), is preferred due to minimal discomfort and risk of infection 

(Chowdhury et al., 2013; Nazmi et al., 2016). Figure 1.1 shows the implementation of 

surface EMG (invasive method) and needle EMG (non-invasive method).  
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Figure 1.1 (a) Surface EMG (sEMG) (b) Needle EMG  (Nam, 2021) 

Commercially available biopotential electrodes for sEMG are the wet electrode 

(gel) using silver/silver chloride (Ag/AgCl). These electrodes needed an electrolyte 

gel to improve the electrical conductivity by hydrating the skin layer and causing 

additional impedance (Alizadeh-Meghrazi et al., 2021). Besides that, the gel will dry 

up during long-term acquisitions, letting the recorded signal to be distorted and 

degrade the performance of the electrodes (Rodrigues et al., 2020). Because of these 

issues, researchers have been working hard to find alternatives for the standard 

Ag/AgCl electrode. While due to the limits of traditional gelled electrodes, dry 

electrodes have been widely explored to overcome the fundamental constraint of 

Ag/AgCl electrodes.  

Figure 1.2 shows the skin-electrode interface, which is modelled by an 

electrical circuit model that consists of resistive and capacitive components (Button, 

2015). From the figure, we can observe that, compared to the Ag/AgCl wet electrode, 

the dry electrode has lower skin-electrode contact impedance by eliminate the 

electrolyte gel. 
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Figure 1.2 Skin-electrode interface of Ag/Ag Cl gel electrode vs dry textile electrode 

(Button, 2015) 

Furthermore, dry electrodes based on flexible materials are introduced for a 

better wearing comfortable besides reducing motion artifacts when analysing the long-

term sEMG (Rodrigues et al., 2020). Commonly used conductive materials to fabricate 

dry and flexible electrodes include carbon allotropes (e.g. carbon nanotubes and 

graphene (Hu et al., 2010)), parylene (Peng et al., 2016), polydimethylsiloxane 

(PDMS) (Chen et al., 2018), and textile (e.g. woven cotton, nylon, and polyester) 

(Saleh et al., 2020). They can also be fabricated on textiles using different techniques 

such as printing techniques (e.g. ink-jet) (Newman et al., 1992; Safaryan et al., 2017) 

and screen printing (Chlaihawi et al., 2018; Lamas-Ardisana et al., 2018), dip coating 

(Tang and Yan, 2017; Ankhili et al., 2018; Zhao et al., 2018), and physical vapor 

deposition (Lacerda Silva et al., 2013; Pawlak et al., 2017).  However, the advantages 

of graphene have been extensively studied due to its consistent electrical performance, 

strong chemical stability and innate flexibility (Xu et al., 2011). The potential of these 

materials to replace the current Ag/AgCl electrode can be reflected by several studies 

with a relevant frequency range of 1-500 Hz, getting up to 97 % of correlation values 

between these two electrodes (Ozturk and Yapici, 2019). 

This study is to compare the performance of a reduced Graphene Oxide (rGO)- 

coated cotton dry electrodes which is still under development, with commercially 

available wet Ag/AgCl electrodes. This dry electrode using soaking technique and 

diminish with ascorbic acid to coat the graphene oxide (GO) with the cotton fabric. 

Then, the electrode was combined with a fabricated cotton fabric, one cotton fabric 
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with thin layer of wax and four coating of blank cotton as shown in Figure 1.3 (Saleh 

et al., 2020). The details are mentioned in previous study (Saleh S.M et al., 2018).  

 

Figure 1.3 Fabrication of electrode (Saleh et al., 2020)  

1.2 Problem Statement 

The performance of commercially available Ag/AgCl wet electrodes will 

degrade due to the gel's drying up during long-term acquisitions (Tronstad et al., 2010; 

Ying et al., 2020). Besides that, the gel also provides additional impedance to the skin-

electrode interface (Button, 2015) and might have skin irritation over time (Ask et al., 

1979). Therefore, evolution of textile-based dry electrode could lead to a promising 

result which is comparable than existing commercial electrode. 

For the development of rGO coated cotton dry electrode, the longevity and 

thermal test, measurement of skin-electrode impedance and SNR were done and 

compared with Ag/AgCl electrode from previous study (Saleh et al., 2020). However, 

there were not sufficient data for the SNR measurement. Only one female subject was 

tested for the ECG measurement at the position of left chest mimic Einthoven Triangle 

lead III (Saleh et al., 2020). It is hard to show if both electrodes are comparable in term 

of SNR. Moreover, the previous work used graphene electrode for ECG measurement 

without considering EMG effect to the study of acquired ECG. 
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1.3 Research Objectives 

The objectives of this thesis are described below: 

(a) To evaluate the performance of graphene electrodes and Ag/AgCl electrodes. 

(b) To analyse performance of both electrodes using SNR and Bland Altman plot. 

1.4 Scope of study 

This thesis focuses on evaluate the performance of available graphene dry 

electrode to the commercially available wet Ag/AgCl electrode. An experiment to 

study the activity of biceps brachii and triceps brachii during flexion and concentration 

was conducted. Then, filtering was applied to the raw data and SNR of both electrodes 

were analyzed and reviewed using Bland Altman analysis.  

1.5 Significance of Study 

The thesis presents a significant contribute to the development of rGO coated 

cotton dry electrode. The performance of the dry electrode was analyzed and compared 

to the gold standard Ag/AgCl wet electrode. Since the data involves multiple 

participants, the fulfilment of the dry electrode was examined in details before 

marketing. 

1.6 Outline of Thesis 

This thesis is divided into five chapters; the first chapter is the introduction to 

the thesis. This chapter describes the study's background, problem statements, research 

objective and scope of study. These sub-topics will give the reader a basic overview 
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about the thesis. In Chapter 2, some literature review of theoretical background is 

presented. General characteristic of the sEMG signals, and overview of the upper limbs 

experiment were introduced. Besides that, SNR of dry electrodes from previous studies 

and statistical analysis that used in the experiment were also presented. Furthermore, 

Chapter 3 represents the approach of the experiment and gives a guideline framework 

with methods, or techniques used in the thesis' implementation. This study continues 

with Chapter 4, which explains the details of the experiment and discuss about the 

results. Finally, Chapter 5 provides summaries of the conclusions in accordance with 

the objectives of the research, as well as some recommendations for further work of 

the thesis. 
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