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ABSTRACT 

In general, a novel active quenching circuit for a single photon avalanche diode 

(SPAD) is invented to optimize the light detection and ranging (LiDAR) application, 

where the modulating performance is subject to specific demands. The LiDAR 

application favors the incredible and accurate frequency range and flexibility in a wide 

variety of terrains. The SPAD operates in Geiger mode operation whereby the presence 

of the photon detection is captured when excess bias voltage is operating above its 

breakdown voltage. In previous thesis, a passively quenched circuit (PQC) integrated 

with SPAD employing submicron of 130 nm complementary metal-oxide- 

semiconductor (CMOS) technology could only operate at a maximum frequency of 1 

GHz. To address the limitations of PQC SPAD design, an actively quenched of active 

quenching circuit (AQC) and active recharge circuit (ARC) integrated with SPAD is 

proposed in this theses by improving better and excellent amplification strategy based 

on submicron of 130 nm and 250 nm CMOS technology. The drive of this project is to 

improve frequency up to 2 GHz operating at low-voltage excess biased and investigate 

the effects of both passively and actively quenched SPAD. To determine the power 

dissipation for each quenching design, the drain current is computed. The performance 

of the proposed solutions are characterized in terms of recovery time, tr and quenching 

time, tq through the resultant waveform of quenching pulse simulation waveforms that 

yields to dead time, td performance. In this project, the functioning of a basic PQC 

associated with SPAD is re-constructed first using Cadence Design System and 

LTSpice XVII tools. Then, followed by the development of the suggested design of 

AQC and ARC integrated with SPAD using LTSpice XVII tool. The amplification 

scheme of Geiger mode for photon detection is successfully optimized by achieving 

maximum of 2 GHz from 0.5 GHz using LTSpic XVII tool. 
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ABSTRAK 

Secara umum, litar pelindapkejutan aktif baru untuk diod runtuhan foton 

tunggal (SPAD) dicipta untuk mengoptimumkan aplikasi pengesanan dan julat cahaya 

(LiDAR), di mana prestasi pemodulatan tertakluk kepada permintaan khusus. Aplikasi 

LiDAR mengutamakan julat frekuensi yang luar biasa dan tepat serta fleksibiliti dalam 

pelbagai jenis rupa bumi. SPAD beroperasi dalam operasi mod Geiger di mana 

kehadiran pengesanan foton ditangkap apabila voltan pincang beebihan beroperasi di 

atas voltan pecahnya. Dalam tesis sebelumnya, litar dipadamkan pasif (PQC) yang 

disepadukan dengan SPAD menggunakan submikron teknologi semikonduktor logam- 

oksida-oksida (CMOS) pelengkap 130 nm hanya boleh beroperasi pada frekuensi 

maksimum 1 GHz. Untuk menangani batasan reka bentuk PQC SPAD, litar 

pelindapkejutan aktif (AQC) dan litar cas semula aktif (ARC) yang disepadukan secara 

aktif dengan SPAD dicadangkan dalam tesis ini dengan menambah baik strategi 

penguatan yang lebih baik dan cemerlang berdasarkan submikron 130 nm dan 250 nm 

teknologi CMOS. Pemacu projek ini adalah untuk meningkatkan frekuensi sehingga 2 

GHz yang beroperasi pada lebihan berat sebelah voltan rendah dan menyiasat kesan 

kedua-dua SPAD yang dipadamkan secara pasif dan aktif. Untuk menentukan 

pelesapan kuasa bagi setiap reka bentuk pelindapkejutan, arus longkang dikira. Prestasi 

penyelesaian yang dicadangkan dicirikan dari segi masa pemulihan, tr dan masa 

pelindapkejutan, tq melalui bentuk gelombang terhasil bagi bentuk gelombang simulasi 

nadi pelindapkejutan yang menghasilkan masa mati, prestasi td. Dalam projek ini, fungsi 

PQC asas yang dikaitkan dengan SPAD dibina semula terlebih dahulu menggunakan 

Sistem Reka Bentuk Cadence dan alat LTSpice XVII. Kemudian, diikuti dengan 

pembangunan cadangan reka bentuk AQC dan ARC yang disepadukan dengan SPAD 

menggunakan alat LTSpice XVII. Skim penguatan mod Geiger untuk pengesanan 

foton berjaya dioptimumkan dengan mencapai maksimum 2GHz daripada 

0.5 GHz menggunakan alat LTSpic XVII. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Traditionally, photomultiplier tubes (PMTs) were introduced to be compared 

favorably to the advanced technological implementation of Silicon Photomultipliers, 

SiPMs or also known as Silicon Photon Avalanche Diode (SPAD) [14]. PMT was 

invented over 80 years ago to serve a purpose of detecting light at the single photon 

level. It offers limited detection efficiency for longer wavelengths and lower 

frequencies [15]. In the early 2000s, the invention of SPADs have been implemented 

within CMOS technology. SPAD is a photodetector that has radically increased their 

performance featuring high internal gain and single photon sensitivity for a significant 

role in a variety photon counting and photon timing applications. Since, the photon 

sensitivity of SPAD is high, thus it is favorable in detecting light at a high detecting 

rate in low light environment. Since the late 1900s, these SPADs applications are 

increased significantly. For instance, Light Detection and Ranging (LiDAR), quantum 

computing, quantum cryptography, Fluorescence Lifetime Imaging Microscopy 

(FLIM), Time-of-Flight (ToF) 3D imaging, and Time Correlated Single Photon 

Counting (TCSPC) [3]. SPADs are p-n junction, where the operation of the diode is 

occurred when the reverse bias voltage, VBIAS exceeds the breakdown voltage, VB [16]. 

In this state of operation, which is called the Geiger mode, the electrical field across 

the p-n junctionis extremely high [3]. In order to allow the photon detection in SPAD 

detector, the quenching process is needed to operate below the excess avalanche 

breakdown current. When the avalanche current is cut off and VBIAS is reset, then the 

photon is detected [1]. 

There are three types of quenching circuits: passive quenching, active quenching, 

and hybrid. This study will only concentrate into passive and active quenching. The 

previous project addressed the passive quenching SPAD. Based on previous project, 

https://www.researchgate.net/publication/327822066_Quenching_Circuit_and_SPAD_Integrated_in_CMOS_65_nm_with_78_ps_FWHM_Single_Photon_Timing_Resolution
https://www.researchgate.net/publication/252155811_Model_for_passive_quenching_of_SPADs#%3A~%3Atext%3DA%20passively%20quenched%20SPAD%20circuit%2Cand%20a%20series%20load%20resistor.%26text%3DIn%20the%20first%20model%2C%20the%2Cis%20allowed%20to%20be%20stochastic
https://en.wikipedia.org/wiki/CMOS
https://www.mdpi.com/1424-8220/21/12/4014
https://archive.ll.mit.edu/publications/journal/pdf/vol13_no2/13_2geigermode3d.pdf
https://www.mdpi.com/1424-8220/21/12/4014/pdf
https://ieeexplore.ieee.org/document/9165061
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the passive quenching circuit is implemented using 130 nm and 250 nm by resulting 

the limitation of the performance in terms of frequency, f where it could only operates 

at the highest frequency of 1 GHz only which is equivalent to 1 Gcps and 1ns of 

counting rate and dead time, td, respectively [10]. Based on previous passive quenching 

SPAD, the same design is constructed and simulated using LTSpice tool which is 

resulting the best frequency could reach up to 0.5 GHz equivalent to td of 2 ns. As a 

result, an active quenching SPAD is chosen for this project to overcome the 

performance drawbacks. Active quenching SPAD simulation model improves gain 

using submicron of 130 nm and 250 nm CMOS technology whenever weak photon 

signal is detected. In this project, the frequency is improved up to 2.0 GHz which is 

equivalent to 2.0 Gcps and 0.5 ns of counting rate and td, respectively. Moreover, the 

amplification of Geiger mode detection is observed for linear array design to obtain 

high sensitivity. The amplification scheme for photon detection is optimized from 0.5 

GHz to 2.0 GHz. 

 
1.2 Problem Statement 

 

 
The association of SPAD model and active quenching is fully integrated by 

resulting more complex design as compared to passive quenching due to the additional 

components required in the design [5]. In order to detect the incoming photons, the 

high-speed detection rate is used in SPAD model. The limitation and extension of 

SPAD model is due to the leakage current [12] and high sensitivity [13], respectively. 

According to previous design, the implementation of SPAD with passive quenching 

circuit (PQC) or also known as current-mirror causing drawback of occupying on chip 

area consumption due to the utilization of high ohmic resistor [11]. Besides, the 

frequency could only reach at maximum of 1 GHz using Mentor Graphics [10]. 

Meanwhile, the frequency could obtain at maximum of 0.5 GHz using LTSpice. 

Furthermore, the PQC yields longer td and high power dissipation, PD [5]. As a result, 

the SPAD model is ensemble with active quenching circuit (AQC) to overcome the 

constraints discussed. The frequency is pumped up from 0.5 GHz to 2.0 GHz alongside 

enhancing the counting rate. The performance of td and PD are also improved. Moving 

on, the active quenched SPAD with improved amplification is design to achieve low 

voltage using submicron of 130 nm and 250 nm CMOS technology. Hence, the suitable 

tool is required to fulfill the design criteria.

http://eprints.utm.my/id/eprint/93022/1/TanYiQuanMSKE2020.pdf
https://www.researchgate.net/publication/280916695_Compact_CMOS_active_quenchingrecharge_circuit_for_SPAD_arrays
https://www.sciencedirect.com/science/article/pii/S0168900218317704
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-18-21861
http://eprints.utm.my/id/eprint/79584/1/WoonSheueWenMFKE2018.pdf
http://eprints.utm.my/id/eprint/93022/1/TanYiQuanMSKE2020.pdf
https://www.researchgate.net/publication/280916695_Compact_CMOS_active_quenchingrecharge_circuit_for_SPAD_arrays
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In previous project, the Mentor Graphics Pyxis EDA program and Sil013 standard 

cell library is utilized to achieve the amplification scheme. A standard cell library used 

in Mentor Graphics Pyxis Electronic Design Automation (EDA) software is sil013 

refers to 0.13 μm CMOS process technology under silterra [17]. This software covers the 

full IC design flow from apprehending through concluding layout verification and 

analysis. Conversely, an alternative tool that could be used in this project that refer to 

a standard cell library of 130 nm is Cadence Design System [22]. By following the VDD 

used in previous project, the value is sustained at 1.2 V for both previous and proposed 

design. The Cadence Design System toolchain is used to mimic a conventional 130 nm 

CMOS technology process [23]. However, these tools require a license, which must be 

purchased and used within the timeframe specified. In order to resolve the license issue, 

then the implementation of quenching circuits is continued with 250 nm CMOS 

technology using LTSpice tool. It is a free computer program that implements a 

LTSpice simulator for electronic circuits. As a result, the likelihood of encountering a 

license tool issue as compared to Mentor Graphics and Cadence tools. The LTSpice 

tool improves the waveform viewer to speed up the simulation of regulators. [18]. The 

LTSpice tool is well-known for its usage in amplification schemes for avalanche 

photodiodes with higher supply voltages, such as VDD at 2.5 V operating at 250 nm 

CMOS technology [19]. The functionality of this tool is similar to Mentor Graphics and 

Cadence tools which is used for integrated circuit (IC) design environments to the most 

perplex VLSI designs. A standard cell library is imported into the project to import a 

set of components of resistor-capacitor (RC)-level, and transistor-level such as NMOS 

and PMOS Metal Oxide Semiconductor Field Effect Transistor (MOSFET). 

 
 

1.3 Objectives 

 

 
The goal of this project is to develop an actively quenched SPAD with improved 

amplification leveraging submicron of 130 nm and 250 nm CMOS technology. The 

designs are put into action using the Mentor Graphics Pyxis EDA, and Cadence Design 

System to simulate the constructed passive quenching SPAD circuit at 130 nm. 

Meanwhile, LTSpice XVII is used to simulate the passive and active quenching SPAD 

circuits at 250 nm. The objectives of this project are outlined below. 

 

 

https://ieeexplore-ieee-org.ezproxy.utm.my/stamp/stamp.jsp?tp&arnumber=9574023
https://ieeexplore-ieee-org.ezproxy.utm.my/stamp/stamp.jsp?tp&arnumber=8298639
https://ieeexplore-ieee-org.ezproxy.utm.my/stamp/stamp.jsp?tp&arnumber=7311163
https://iopscience-iop-org.ezproxy.utm.my/article/10.1088/1742-6596/1362/1/012004/pdf
https://ieeexplore-ieee-org.ezproxy.utm.my/stamp/stamp.jsp?tp&arnumber=9544876
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i. To design the association of active quenching circuit with single pixel SPAD 

circuit using submicron of 130 nm and 250 nm CMOS technology. 

ii. To enhance the design by optimizing the amplification scheme of Geiger mode 

for photon detection operating at 2.0 GHz. 

iii. To characterize the performance of the actively quenched SPAD array with the 

proposed SPAD simulation model. 

 

1.4 Scope of Work 

 

 
This project is focused on modelling active quenching circuit and active 

recharge integrated with single pixel SPAD circuit with necessary sizing factor. 

Initially, the model is designed using 130 nm CMOS process via Mentor Graphics 

Pyxis EDA and Cadence Design System tool. The width and length size of the 

transistor used is 350 nm and 130 nm, respectively to quench the SPAD model. 

However, since the license for both tools got suspended, then the project is continued 

using LTSpice XVII tool. By sustaining the width size of the transistor, the length size 

is tuned to minimum of 250 nm. The increment of the length size affects the transistor 

gates such as it will longer the delay. The design of single pixel SPAD model consist 

of types of quenching circuits, transistor triggering SPAD or also known as SPAD 

detector circuit, and two stages amplifier for pulse discriminator circuit (PDC). The 

sorts of quenching circuits are built using previous and proposed solutions. The earlier 

design had a passive quenching circuit (PQC). Meanwhile, active quenching circuits 

(AQC) and passive quenching with active recharging circuit or also known as active 

recharge circuit (ARC) in short, are used in the recommended designs. 

 
The characterization is carried out in accordance with previous findings and the 

recommended project design. The outcome will then be compared in order to 

benchmark performance. The SPAD simulation model is increased by optimizing 

signal recharging and quenching before transmitting to the PDC. Eventually, the 

voltage gain, frequency, counting rate, and sensitivity of the design specification will 

be evaluated. The drain current, ID is mathematically computed to calculate PD by 

sustaining the voltage supply. Simultaneously, the timing analysis and PD are obtained. 

The physical layout simulation output is compared to the reference schematic circuit 

to confirm that both processes provide identical results. 
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1.5 Thesis Outlines 

 

 
This thesis offers a research study on enhancing the amplification scheme for 

Geiger mode operation when a weak photon signal is detected in a low voltage CMOS 

technology. The outline for five chapters is described briefly below. 

 
The first chapter is an introduction. Essentially, it outlines the context and 

purpose of the project. Then, it discloses the objectives, pros and cons in the problem 

statement and scope of work of this project. 

 
Next, the second chapter gives an overview of the theoretical literature review. 

This chapter discussed and tabulated a strategy for identifying and investigating prior 

information and knowledge relevant to this thesis. In general, the discovery of diverse 

performance based on different sorts of length size of transistor in CMOS technology. 

Additionally, the SPAD detector in CMOS technology in the needed area is explored. 

The passive and active quenching designs associated with SPAD model are reviewed. 

 
Furthermore, the third chapter describes the research methodology. The 

employment procedures and strategies in designing previous PQC SPAD and proposed 

AQC and ARC SPAD are discussed here. The high-level flowchart of the workflow 

based on project execution is provided to convey a better explanation. Technically, it 

explains the design steps using Cadence and LTSpice tools. The schematic circuitry 

for previous and proposed designs are provided here. 

 
In forth chapter, it refers to the data interpretation and performance analysis. 

The summarization of the collected data such as parameters specification for SPAD 

quenching circuits and its simulation results of single pixel SPAD is made. The 

mathematical computation and summary of the parameters reviewed are also captured 

here. 
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This project will come to a close in Chapter 5. It summarizes the study findings, 

discusses the project's accomplishments and limitations. Moreover, it reflects the 

future recommendation to enhance the performance of the project. 
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