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ABSTRACT 

 
Memristors are passive components with a varying resistance that depends on 

the previous voltage applied across the device. However, limited endurance of 
memristor devices and variations (both cycle-to-cycle and device-to-device) are 
important parameters to be considered in the evaluation especially in memristive logic 
families. There are a lot of factors on memristor variability, such as the influence of 
temperature, influence of switching the pulse parameters, influence of the 
concentration of oxygen vacancies, active dielectric layer structure and thickness as 
well as the influence of the parameters of conducting cell electrodes. In this work, only 
cycle-to-cycle variation is focus on both the deterministic and probabilistic behaviour 
in a memristor is being simulated and compared using LTSPICE software. Knowm or 
Mean Metastable Switch (MMS) SPICE model is being used to present the behaviour 
of a memristor. Monte Carlo simulation is applied to show the probabilistic behaviour 
in memristor. In summary, the best practical for probabilistic memristor model is 
within 50% range in terms of these model parameters (VON, VOFF, RON, ROFF). 
Besides, the impact of variability of memristors on the performance at in-memory 
logic circuit using different logic design styles such as Memristor-Aided Logic 
(MAGIC) and Memristor Ratioed Logic (MRL) are being implemented and analysed 
based on a universal NOR gate. The performance analysis of implementation of both 
MAGIC and MRL is carried out with respect to the functionality and sensitivity after 
applying the fluctuation. In this work, MRL design style is more robust and less affect 
by the cycle-to-cycle variability. 
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ABSTRAK 

Memristor ialah komponen pasif dengan rintangan yang berbeza-beza yang 

bergantung pada voltan sebelumnya yang digunakan pada peranti. Walau 

bagaimanapun, ketahanan terhad peranti memristor dan variasi (kedua-dua kitaran-ke 

kitaran dan peranti-ke-peranti) adalah parameter penting untuk dipertimbangkan 

dalam penilaian terutamanya dalam keluarga logik memristif. Terdapat banyak faktor 

pada kebolehubahan memristor, seperti pengaruh suhu, pengaruh pensuisan parameter 

nadi, pengaruh kepekatan kekosongan oksigen, struktur dan ketebalan lapisan 

dielektrik aktif serta pengaruh parameter pengalir elektrod. Dalam kerja ini, hanya 

variasi kitaran ke kitaran difokuskan pada kedua-dua tingkah laku deterministik dan 

kemungkinan dalam memristor sedang disimulasikan dan dibandingkan menggunakan 

LTSPICE. Model SPICE Knowm atau Mean Metastable Switch (MMS) sedang 

digunakan untuk mempersembahkan gelagat memristor. Simulasi Monte Carlo 

digunakan untuk menunjukkan tingkah laku kebarangkalian dalam memristor. Secara 

ringkasnya, praktikal terbaik untuk model memristor kemungkinan adalah dalam julat 

10% dari segi parameter model ini (VON, VOFF, RON, ROFF). Selain itu, kesan 

kebolehubahan memristor terhadap prestasi pada litar logik dalam memori 

menggunakan gaya reka bentuk logik yang berbeza seperti MAGIC dan MRL telah 

diterokai dan dianalisis berdasarkan gerbang NOR universal. Analisis prestasi 

pelaksanaan kedua-dua MAGIC dan MRL dijalankan berkenaan dengan fungsi dan 

sensitiviti selepas menggunakan turun naik. Dalam kerja ini, gaya reka bentuk MRL 

lebih teguh dan kurang dipengaruhi oleh kebolehubahan kitaran ke kitaran. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background 

In 1965, Gordon E. Moore, the co-founder of Intel, postulated that the number 

of transistors on a microchip would double every two years which is referred to as 

Moore’s Law [1]. Over the past few decades, the development of computing system 

has been the fastest growing technology, rely on shrinking the size of transistor to 

achieve more powerful device by following Moore’s law. However, Moore’s law 

might be ending since the size of transistor is reaching a physical limit. Obviously, an 

alternative computing approaches or new suitable devices has been explored in order 

to cope with the future challenges especially nowadays artificial intelligence (AI) 

application is in high demand which processes large amount of data. On the road 

towards next-generation chips, memristors, being a very promising technology that are 

highly scalable, reconfigurable and energy-efficient, could open up a new era in 

electronics.  

The term memristor was described and named in 1971 by Leon Chua, 

completing the theory of the four basic electrical components which consists of 

resistor, inductor, and capacitor [2]. In other words, resistor holds the relation between 

current and voltage, the inductor holds the relationship between current and flux, and 

the capacitor holds the relation between voltage and charge, while the fourth passive 

device, memristor, should exist to hold the relationship between magnetic flux and 

charge. Hewlett Packard Laboratories (HP Lab) did the initial memristor device 

fabrication in 2008, which comprise of a 5nm stoichiometric TiO2 and an oxygen-

deficient TiO2-x layers covered by two platinum electrodes [3]. When a voltage is 

applied across the memristor, the oxygen deficiencies in the TiO2-x layers migrate and 

leads to the changes of the thickness of the oxygen deficient layer and thus, the 

resistance of the memristor device change. They tend to stay in the same position after 
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the voltage source is removed due to the oxygen vacancies have a low mobility, this 

best describing the term, memristor, a contraction of “memory” and “resistor”, where 

the value of the resistance is retained even after the removal of the acting potential. 

Hence, memristor is also a non-volatile memory element. This property makes it useful 

in many important application areas such as digital circuits, biological and 

neuromorphic systems, computer technology as well as digital memory, neural 

networks and analog electronics, programmable logic and signal processing. Other 

than that, memristors are proven to have low power consumption [4] , low 

computational complexity [5], high endurance [6], fast switching speed [7], CMOS- 

compatibility for edge computing in IoT [8] as well as excellent scalability [9]. 

However, this non-volatile memory device shows inherent stochasticity in the 

operation due to the intrinsic variation in switching conductance caused by the inherent 

material property in memristor [10]. In this case, it can be classified into cycle-to-cycle 

(C2C) and device-to-device (D2D) variability. C2C relates to the random physical 

mechanisms behind the process while D2D links to the technological differences 

during fabrication process. A huge industrial exploitation of memristors is likely to be 

hindered by these phenomena, especially when it comes to non-volatile circuits. A 

better insight to show this fundamental problem is through the application of 

memristors especially the digital in-memory logic circuit. At present, memristor-based 

logic circuits can be divided into stateful and non-stateful categories, an example of 

stateful logic families would be Memristor-Aided Logic (MAGIC) and non-stateful 

can be represented by Memristor-Ratioed Logic (MRL) design style. Stateful logic is 

defined when the memristors fulfil two functions: firstly, using resistive states, the 

input data can be stored during computation; secondly, their internal resistive state is 

taken into consideration when performing logic computations. [11] 
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1.2 Problem Statement 

As a prospective candidate for future nonvolatile memory, memristors are 

extensively studied. Memristors has simple structure and great scalability, along with 

fast switching speed and compatible with silicon complementary metal-oxide-

semiconductor (CMOS) technology to be applied for in-memory logic circuits. Some 

previous work proposed memristor-based logic gate is built upon deterministic model 

and accurate bit-stream. However, circuit design relies heavily on memristor 

variability, which needs to be addressed in the modeling context. The creation (set 

process) and destruction (reset process) of conductive filaments at atomic scale in a 

memristor are related with diffusion, nucleation and redox which is considered as 

random processes connected to physical mechanisms, thus results in the resistive 

switching stochasticity property in memristor device since memristors are based on 

resistive switching of filamentary nature. However, this project only focuses on the 

cycle-to-cycle variability in memristor devices which is a more intrinsic problem than 

the device-to-device variability, because device-to-device variability depends on the 

fabrication process, and better uniformity control of the processes may improve the 

device-to-device uniformity. The question in this research would be: How this 

variability can affect the performance towards different logic design styles of 

memristor-based logic circuit? 

1.3 Research Objectives 

The objectives of this project are: 

 

1. To simulate and compare both the deterministic and probabilistic behavior in 

a memristor using LTSPICE. 

2. To implement two memristors-based logic circuit design styles on a universal 

NOR gate. 

3. To compare and analyze the impact of variability of memristors on the 

performance at in-memory logic circuit using different logic design styles. 
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1.4 Scope of Project 

The scope of project is described as following: 

• Knowm SPICE model [12] with Monte Carlo simulation to show 

probabilistic behavior 

• Only consider cycle-to-cycle variation 

• Implementation on 3 different logic design styles, such as MAGIC and MRL 

• Digital logic circuit used is a NOR gate 

• Performance comparison will base on the functionality and sensitivity 
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