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ABSTRACT 

Cache coherence support is a major component in network-on-chip (NoC) 

systems which consist of multiple processing cores or elements as it is essential to 

ensure that the changes in shared memory are well communicated between all cores. 

Due to the nature and architecture of NoC, cache coherence protocols can have 

different characteristics in terms of various design consideration factors such as 

performance, area and power. Since the number of cores are expected to increase more 

in computing systems in the future, these factors need to be appropriately considered 

for scalability during design process so that the implementation will be feasible and be 

able to maintain an effectiveness of the system design. Cache coherence protocols 

proposed for NoC systems such as the directory protocol, Hammer and token protocol 

each has different impact on execution performance and design cost associated, due to 

the different mechanism used to maintain the cache coherency. In this project, these 

protocols are implemented and simulated using the GEM5 simulator and the area 

overhead is estimated using the Multicore Power, Area, and Timing (McPAT) 

framework. The simulation using blackscholes, fluidanimate and bodytrack 

application from the Princeton Application Repository for Shared-Memory Computers 

(PARSEC) benchmark shows that the Hammer protocol outperforms all evaluated 

protocols in execution performance, but the area overhead required for the protocol is 

also the largest. Token protocol, on the other hand, provide a significant lower 

performance, which is 2% lower compared to the Hammer protocol, but its 7% area 

overhead incurred is the lowest among all protocols. This shows that token protocol 

exhibits the best scalability for area overhead with increasing number of processing 

cores while providing moderate performance in terms of execution time. 
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ABSTRAK 

Sokongan kesepaduan cache ialah komponen utama dalam sistem rangkaian-

pada-chip (NoC) yang terdiri daripada berbilang teras pemprosesan atau elemen 

kerana ia adalah penting untuk memastikan bahawa perubahan dalam memori dikongsi 

dikomunikasi dengan baik antara semua teras. Disebabkan oleh sifat dan seni bina 

NoC, protokol kesepaduan cache mempunyai ciri yang berbeza dari segi pelbagai 

faktor pertimbangan reka bentuk seperti prestasi, kawasan dan kuasa. Memandangkan 

nombor teras dijangka akan meningkat dalam sistem komputer pada masa hadapan, 

faktor-faktor ini perlu dipertimbangkan dengan sewajarnya untuk kebolehskalaan 

semasa proses reka bentuk supaya implementasi boleh dilaksanakan dan dapat 

mengekalkan keberkesanan reka bentuk sistem. Protokol kesepaduan cache yang 

dicadangkan untuk sistem NoC seperti protokol direktori, Hammer dan token 

mempunyai kesan yang berbeza terhadap prestasi pelaksanaan dan kos reka bentuk, 

disebabkan oleh perbezaan mekanisme yang digunakan untuk mengekalkan 

kesepaduan cache. Dalam projek ini, protokol-protokol tersebut telah dilaksanakan 

dan disimulasikan menggunakan simulator GEM5 dan overhed kawasan telah 

dianggarkan menggunakan Multicore Power, Area, and Timing (McPAT). Simulasi 

menggunakan aplikasi blackscholes, fluidanimate dan bodytrack daripada Princeton 

Application Repository for Shared-Memory Computers (PARSEC) menunjukkan 

bahawa protokol Hammer mengatasi semua protokol dari segi prestasi perlaksanaan, 

tetapi overhead kawasan tambahan yang diperlukan juga adalah yang paling besar. 

Protokol token, sebaliknya, memberikan prestasi yang lebih rendah, iaitu 2% lebih 

rendah berbanding dengan protokol Hammer, tetapi overhed kawasannya sebanyak 

7% adalah yang paling rendah antara semua protokol. Ini menunjukkan bahawa 

protokol token mempamerkan kebolehskalaan yang terbaik untuk overhed kawasan 

dengan peningkatan bilangan teras pemprosesan sambil memberikan prestasi 

sederhana dari segi masa pelaksanaan. 

  



 

viii

TABLE OF CONTENTS 

 TITLE PAGE 
 

DECLARATION iii 
DEDICATION iv 
ACKNOWLEDGEMENT v 
ABSTRACT vi 
ABSTRAK vii 
TABLE OF CONTENTS viii 
LIST OF TABLES x 
LIST OF FIGURES xi 
LIST OF ABBREVIATIONS xii 
LIST OF APPENDICES xiii 

CHAPTER 1  INTRODUCTION 1 
1.1  Problem Background 1 

1.2  Problem Statement 3 

1.3  Research Objectives 4 

1.4  Scope of research 4 

1.5  Report Organization 5 

CHAPTER 2  LITERATURE REVIEW 7 
2.1  Overview 7 

2.2  Shared Memory on Many-core Systems 7 

2.3  Cache coherence protocols 9 

2.3.1  MOESI Protocol 9 

2.3.2  Directory protocol 10 

2.3.3  Hammer protocol 11 

2.3.4  Token protocol 12 

2.3.5  Scalability of Cache Coherence Protocols 12 

2.4  Related works 13 



 

ix

2.5  Summary 21 

CHAPTER 3  RESEARCH METHODOLOGY 22 
3.1  Overview 22 

3.2  Cache Coherence Protocol 22 

3.3  Overall Project Flow 22 

3.4  Simulation Environment 24 

3.4.1  M5 24 

3.4.2  GEMS 24 

3.4.3  GEM5 25 

3.5  Memory system and interconnect network 27 

3.6  McPAT 29 

3.7  Benchmark 31 

3.8  Simulation Environment and Setup 33 

3.9  Summary 34 

CHAPTER 4  RESULTS AND DISCUSSION 35 
4.1  Overview 35 

4.2  GEM5 Simulator Setup 35 

4.3  Validating System Setup 37 

4.4  PARSEC Benchmark 38 

4.5  Cache Access 40 

4.6  Network Access 41 

4.7  Area Estimation 42 

4.8  Summary 43 

CHAPTER 5  CONCLUSION 44 
5.1  Achievement of Project Objectives 44 

5.2  Future Work 45 

REFERENCES 46 

Appendices A - C          51 
  

Stamp



 

x

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1  Description of MOESI protocol’s cache state. 10 

Table 2.2  Summary of related works. 20 

Table 3.1  Comparison of PARSEC, SPLASH-2 and SPEC CPU 
2006. 31 

Table 3.2  Comparison of PARSEC workloads used. 32 

Table 3.3  Simulation parameters. 34 

Table 4.1  Switches for the GEM5 simulation run command. 37 

Table 4.2  Blackscholes. 38 

Table 4.3  Fluidanimate. 38 

Table 4.4  Bodytrack. 39 

Table 4.5  Cache access statistics for Bodytrack application. 40 

Table 4.6  NoC statistics. 41 

Table 4.7  Area estimation with 65nm technology process. 43 

 

  



 

xi

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 1.1  Typical tiled chip multi-processor (CMP) structure [6]. 2 

Figure 2.1  KNL’s architecture [14]. 8 

Figure 2.2  MOESI protocol’s cache state transition [6]. 9 

Figure 2.3  Handling of cache miss in directory, Hammer and token 
protocols [6]. 11 

Figure 2.4  SelectDirectory’s proposed structure [19]. 14 

Figure 2.5  Average memory delay (ns) against area: 15 

Figure 2.6  Network latency for each protocol [24]. 16 

Figure 2.7  Area overhead for different protocols [6]. 17 

Figure 2.8  3D mesh NoC architecture [29]. 18 

Figure 2.9  The structure of DWP-D [32]. 19 

Figure 3.1  Overall project flow. 23 

Figure 3.2  Mapping of system sketch to simulation output in GEM5. 
[33] 26 

Figure 3.3  System call emulation mode (a) and full system simulation 
mode (b) of GEM5 simulator. [33] 27 

Figure 3.4  High level view of Ruby memory simulator. 28 

Figure 3.5  GARNET’s interconnection modelling. 28 

Figure 3.6  McPAT framework overview. 29 

Figure 3.7  McPAT’s estimation model. 30 

Figure 3.8  McPAT’s manycore system model. 30 

Figure 3.9  Experiment setup. 33 

Figure 3.10  Core interconnection in simulation. 33 

Figure 4.1  Building GEM5 simulation model. 36 

Figure 4.2  Running test application using the GEM5 simulator in SE 
mode. 37 

Figure 4.3  Execution time overhead for blackscholes, fluidanimate 
and bodytrack application. 39 



 

xii

LIST OF ABBREVIATIONS 

AMD  -    Advanced Micro Devices 

CMP  -    Chip Multi-processor 

DWP-D -    Dynamic Way Partitioning Directory  

FFT  -    Fast Fourier Transform 

GEMS  -    General Execution-driven Multiprocessor Simulator 

IRDS  -    International Roadmap for Devices and Systems 

KNL  -    Knights Landing 

McPAT -    Multicore Power, Area, and Timing  

NoC  -    Network-on-Chip 

PARSEC -    Princeton Application Repository for Shared-Memory Computers 

PDE  -    Partial Differential Equation 

ROI  -    Region-of-Interest 

SLICC  -    Specification Language for Implementing Cache Coherence 

SPH  -    Smoothed Paticke Hydrodynamics  

XML  -    Extensible Markup Language 

  



 

xiii

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

Appendix A  GEM5 Simulator Build Output Log 50 

Appendix B  GEM5 Simulator Run Output Log 52 

Appendix C  Linux Full System Output Log 56 

 

 

 

 



 

1 

CHAPTER 1  
 
 

INTRODUCTION 

1.1 Problem Background 

Most of the electronic devices today feature more than single processor core 

[1], as a methodology to better harness the thread-level parallelism in order to improve 

the computing performance. It is evident that the approach of adding more and more 

processing cores which can be individually turned on or off is apparently an 

appropriate architectural decision made in most modern architectures. It can maintain 

the balance between both the maximum peak performance when necessary and 

efficient power consumption during idle period.  

 

The 2015 International Roadmap for Devices and Systems (IRDS) report 

predicts a 30-fold increase in the number of processing cores by 2030 due to the 

increasing demand for information processing [2]. With the number of processing 

cores increases and multicore computer architecture will be the norm in future, the 

architectural paradigm is trending towards communication intensive from 

computationally intensive.  

 

Network-on-chip (NoC) possess a huge amount of application potential, as 

relatively, conventional bus-based systems can no longer effectively handle the 

communication between the large number of cores and leads to performance 

bottleneck [3]. At the time being, NoC architectures are widely researched [4] as an 

on-chip interconnect in improving inter-core communication to maximize 

performance of multi-core systems. Crossbar switches are not scalable when the 

number of processing elements increase to a certain extent. Since the shared 

interconnect becomes impractical as the cores increases [5], unordered point-to-point 

networks will be the mainstream interconnect technology [6]. 
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With the introduction of NoC, associated challenges arise as the architecture 

per se when dealing with multi core system design considerations such as cache 

coherency [7]. Shared memory model provided to software programmers requires an 

efficient cache coherence support [6], to ensure all the changes made by processors in 

shared memory are communicated with all concerned processors in the system to 

maintain the overall order of instruction execution.  

 

As in multi-core SoC designs, on-chip memory will be the mainstream 

paradigm used in NoC systems. Therefore, an efficient cache coherence protocol is a 

vital component in ensuring the optimum functioning and performance of a multi-core 

NoC system. Snooping based cache coherence protocol, which is common on 

conventional bus-based systems are not practical for NoC systems [6]. It is because its 

implementation does not scale well on systems with large number of cores, since it 

requires the usage of an impractically large interconnect bus while the snooping 

broadcast traffic incurred is also not feasible.  

 

Therefore, cache coherence protocols such as directory [8], token [9] and 

Hammer [10] protocols, have been proposed as alternatives for unordered interconnect 

to address the shortcoming of the existing cache coherence methodologies. Since the 

number of processing elements are expected to exhibit an increasing trend, chip 

resources such as area utilization and power consumption is also expected to be 

increasing in the future computers. 

 

 
Figure 1.1 Typical tiled chip multi-processor (CMP) structure [6]. 



 

3 

1.2 Problem Statement 

With the current technology, it is possible that number of cores of multi core 

systems to be doubled every 18 months [11]. Scalability of various design parameters 

such as area and traffic will be a major challenge in chip design as the number of cores 

increases with the advancement in fabrication technology to boost both the computing 

performance and efficiency. When the number of cores in a system increases beyond 

some extend, not all protocols targeting implementation on unordered NoC will be 

well-adapted in terms of area and power overhead [4]. 

 

Chip area is among one of the most critical design constraints in today’s chip 

design as cost of chip die is determined by chip area and chip power [12]. Furthermore, 

area-efficient designs will also result in a smaller size in the final end product, which 

is a desirable trait for designs which are targeting mobile platform market segment.  

 

The directory protocol requires large chip area overhead as it utilises on-chip 

directory to store cache coherence information and the directory area grows with the 

number of processors. Hammer protocol on the other hand uses broadcast mechanism 

instead and requires less are overhead, giving slightly lower execution performance. 

Token protocol is based on token counting for cache coherence, hence also requires 

low area overhead, but can achieve comparatively better performance. 

 

Therefore, it will be beneficial for multi core NoC systems to be optimally 

designed with the appropriate selection of the cache coherence protocol and 

architecture which exhibit good scalability for area overhead requirements. 
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1.3 Research Objectives 

The primary goal of this proposal is to build a cache coherent multi core NoC 

system optimized for area scalability. Specifically, the objectives of this project are: 

 

I. To characterize the impact of various cache coherence protocols in 

terms of the execution performance. 

II. To validate and characterize using benchmark the cache coherence 

protocol with good scalability for area overhead. 

 

 

1.4 Scope of research 

When the number of processors to be simulated increases, the simulation time 

will also increase significantly. Therefore, the simulated architecture will be targeting 

a NoC system with 4 processing cores. The interconnect network topology is 2-

dimensional (2-D) mesh network. Due to lack of hardware for evaluation, the 

performance evaluation is done through simulation approach, utilizing the GEM5 NoC 

simulator.  

 

The evaluation of the cache coherence protocols is carried out using the 

Princeton Application Repository for Shared-Memory Computers (PARSEC) [13], 

limited to a subset of the benchmark suite, focusing on workload applications with 

moderate or high intensity of memory access. The chip area for proposed models is 

obtained based on the simulator is subsequently used for analysis and comparison. 
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1.5 Report Organization 

This report is organized into five chapters. In Chapter 2, the following chapter, 

presents a literature review of related works on cache coherent NoC design and the 

analysis on different cache coherence protocol proposals. Next, Chapter 3 illustrates 

the proposed research methodology in this work, which includes the overall 

experiment flow and validation procedures. The corresponding project results and 

discussion will be contained in Chapter 4 of this thesis. Last but not least, the execution 

performance and area overhead for various cache coherence protocols will be 

concluded in Chapter 5.
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