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ABSTRACT 

Position tracking is essential for mobile robots for autonomous functionalities and 

navigation especially for robots that are deployed in underwater conditions. Hence, this thesis 

proposes the usage of the Extended Kalman Filter (EKF) for position tracking of an underwater 

vehicle. Underwater vehicles cannot use conventional GPS for position tracking due to radio 

signals being damped by the body of water surrounding it. Underwater GPS(UGPS) is used for 

predicting the position of underwater vehicles, but it suffers from latency issues. Therefore, 

estimation algorithms like Kalman Filter (KF) and EKF are applied to provide a consistent 

position value from the UGPS. The main advantage of the EKF estimation algorithm is it can 

estimate the state of a non-linear system without an observable model. It is a nonlinear 

extension of KF, and it is a popular method used in estimating robot position due to its 

simplicity and consistency.  The main objective of this research is to implement EKF in 

underwater conditions using UGPS relative position and Inertial Measurement Unit (IMU) 

orientation. The secondary objective of this research is improving EKF positioning estimation 

by implementing of outlier filters. Overall, the proposed system allows accurate position 

tracking of underwater vehicles. Before EKF is applied, the dead reckoning model of the ROV 

was developed as the vehicle odometry. In addition, an experiment is conducted by evaluating 

the odometry of the robot where the transmitter of the UGPS is attached to the Remotely 

Operated Vehicle (ROV) and need to travel a pre-measured distance and compare the odometry 

output of the ROV with the measured distance. To test the effectiveness of the proposed 

method, the EKF was implemented offline with recorded data consisting of Underwater GPS 

(UGPS) and Inertial Measurement Unit (IMU). The filtered EKF output is evaluated by using 

MSE and RMSE to ensure the distinct features of the output signals are retained. The MSE and 

RMSE of median mean filter are less than 0.1 meter which signifies the filtered output of EKF 

retains the distinct features of the raw output of EKF. The proposed method can overcome the 

UGPS latency issues and accurately estimate the underwater vehicle’s pose. 
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ABSTRAK 

Penjejakan kedudukan adalah penting untuk robot mudah alih untuk fungsi dan 

navigasi autonomi terutamanya untuk robot dalam air. Oleh itu, tesis ini mencadangkan 

penggunaan Penapis Kalman Lanjutan (EKF) untuk pengesanan kedudukan kenderaan dalam 

air. Kenderaan dalam air tidak boleh menggunakan GPS konvensional untuk penjejakan 

kedudukan kerana pengecilan  isyarat radio dalam badan air di sekelilingnya. “Underwater 

GPS” (UGPS) digunakan untuk meramalkan kedudukan kenderaan dalam air, tetapi ia 

mengalami masalah kependaman, oleh itu algoritma anggaran seperti KF dan EKF digunakan 

untuk memberikan nilai kedudukan yang konsisten daripada UGPS. Kelebihan utama 

algoritma anggaran EKF ialah ia boleh menganggarkan keadaan sistem bukan linear tanpa 

model anggaran. Ia dianggap sebagai lanjutan tak linear KF, dan ia merupakan kaedah popular 

yang digunakan dalam menganggar kedudukan robot kerana kesenangan dan konsistensinya. 

Objektif penyelidikan adalah untuk melaksanakan EKF dalam keadaan bawah air dengan 

menggunakan kedudukan relatif UGPS dan orientasi IMU dan penilaian data dari EKF dengan 

gabungan penapis terpencil. Objektif sekunder penyelidikan ini adalah menambah baik 

anggaran kedudukan EKF dengan melaksanakan penapis terpencil. Secara keseluruhannya, 

sistem yang dicadangkan membolehkan pengesanan kedudukan kenderaan bawah air. Sebelum 

EKF digunakan, model “dead reckoning” ROV telah ditulis dan dijadikan sebagai odometri 

“Remotely Operated Vehicle” (ROV). Di samping itu, eksperimen dijalankan dengan menilai 

odometri robot di mana pemancar UGPS dipasang pada ROV dan perlu menjalan  jarak pra-

ukur dan membandingkan output odometri ROV dengan yang diukur. Selain itu, bagi menguji 

keberkesanan kaedah yang dicadangkan, EKF telah dilaksanakan secara “offline” dengan data 

yang direkodkan terdiri daripada UGPS dan Unit Pengukuran Inersia (IMU). Output EKF yang 

ditapis dinilai dengan menggunakan MSE dan RMSE untuk memastikan ciri-ciri berbeza 

isyarat output dikekalkan. MSE dan RMSE bagi penapis purata median adalah kurang daripada 

0.1 meter yang menandakan keluaran ditapis EKF mengekalkan ciri-ciri berbeza keluaran asal 

EKF. Kaedah yang dicadangkan boleh mengatasi isu kependaman UGPS dan menganggarkan 

pose kenderaan dalam air dengan tepat. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Problem Background 

The majority of the surface of the earth is covered by water in the form of oceans, rivers, 

and lakes, many of which have not yet been fully explored. Some of the environments are rich 

with natural resources such as fossil fuels. However, these environments are dangerous, and 

the depth is too deep for a normal human being to explore. Therefore, the invention of 

underwater vehicles for marine exploration. Through this exploration underwater robotic 

vehicles can also help protect habitats from environmental contamination and make the best 

use of the existing natural resources for human growth [1].  

Underwater vehicles are usually mobile robots utilized by the marine industry and the 

military for underwater survey operations. Originally developed for marine science and rescue 

missions, they became popular in the 1980s as oil and gas exploration reached depths beyond 

human reach [2,3].  It is a complex machine with a range of mechanical, electrical and software 

subsystems [4]. Underwater vehicles can be divided into 2 categories which are unmanned 

underwater vehicles (UUVs) also known as autonomous underwater vehicles (AUVs) and 

manned underwater vehicles or also known as remotely operated vehicles (ROVs). There is a 

significant difference between AUV and ROV which is AUV are untethered while ROV 

requires tethering for communication and power [5]. The pose of the underwater vehicle is 

crucial for tracking the position and orientation of the vehicle especially for Autonomous 

Underwater Vehicles (AUV). Localization and navigation of an AUV is essential to ensure its 

autonomous functionalities [6]. Thus, the stability of localization and navigation of the vehicle 

depends on the accuracy and stability of the robot pose. 
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Figure 1.1: Remotely Operated Vehicle (ROV) [7]. 

 

 

 
Figure 1.2: Autonomous Underwater Vehicle (AUV) [8]. 

 

 

When a mobile robot is deployed in a designated location it is essential to track the 

robot relative to the environment regardless on the condition of the environment [9]. Mobile 

robots are equipped with high frequency sensors and the ability to triangulate its location based 

on the environment. Unfortunately, underwater vehicles could not use the same type of sensors 

due to the rapid attenuation of radio signals. Therefore, the utilization of different sensors that 

work better in underwater environment such as sonar and acoustics sensors. In underwater 

vehicle applications acoustic sensors are most suitable for tracking purposes. However, these 

sensors with acoustic communication principle have limited bandwidth and operates in low 

frequency [10].  

Hence, the usage of pose estimators such as Kalman Filter (KF) or Extended Kalman 

Filter (EKF) to provide a stable pose estimate of a vehicle. EKF is the nonlinear extension of 

KF and commonly utilize on non-linear systems. EKF is infamous for fusing sensors with 
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different frequencies to provide a state estimate of a vehicle. However, output of EKF is noisy 

compared to KF due to KF is an optimal estimator. To improve the EKF performance, outlier 

filters were added to remove the noise and smoothen the EKF output. The filtered EKF 

undergoes MSE and RMSE to check the retainment of distinct features of the raw EKF output. 

The procedures are discussed further in the upcoming chapters. 

1.2 Problem statements 

Underwater vehicles cannot use conventional GPS to obtain position information due 

to the radio frequency signals by the GPS are being damped by the body of water surrounding 

it [11]. For underwater network and communications acoustic signals, unlike land networks 

and communications, which mostly consists of Electromagnetic (EM) waves. Acoustic signals 

have a lower-frequency characteristic, enabling them to resist underwater transmission 

damping. However, acoustic channels are limited in bandwidth, have a long propagation 

latency, and have a high bit error rate [12]. 

 

Position drift is a common occurrence for underwater robots due to the lack of a stable 

localization while submerged and the effect of ocean currents. The effect of ambient ocean 

currents is a major difficulty in underwater robotics. Ocean currents can cause significant 

position drift due to the lack of GPS while submerged [6]. 

 

Therefore, the use acoustic positioning system in tracking underwater vehicle. Acoustic 

positioning system commonly utilize in tracking underwater vehicles. However, acoustic 

positioning system uses sound waves to propagate information and sound waves are much 

slower than radio waves which results in low update frequency [13,14].  
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1.3 Research Objectives  

The objectives of this research are: 

a) To implement Extended Kalman Filter (EKF) estimation algorithm in underwater 

conditions using Underwater GPS (UGPS) and Inertial Measurement Unit (IMU). 

b) To evaluate EKF pose performance with combination of outlier filters. 

The methods of accomplishing these objectives will be elaborated on in the research 

methodology chapter. 

1.4 Research Scope 

In this section the scopes and limitations of this research. The research scopes are: 

a) The underwater vehicle used in this research is a ROV developed by A2lab. The ROV 

is a non-holonomic vehicle and the kinematics of the ROV is differential drive. The 

maximum depth of the ROV is 2 meters. 

b) The EKF is implemented in offline conditions using ROV motion recordings. The 

recording is done underwater conditions. 

c) The experiment in underwater conditions is done in Hydrotherapy room in UTM.  

d) The EKF analysis is done externally with a developer kit called Nvidia Jetson TX2 with 

ROS framework installed. 

e) The ROS framework version utilize in this research is noetic and melodic. ROS noetic 

is in the ROV while the TX2 uses melodic. 

f) For this research, the depth is a fixed variable which is 1.6 meters. 

g) Another fixed variable is the window size of the median and mean filters. 

h) MATLAB software is used to plot and analyze the extracted data. 

i) The publishing frequency of the UGPS is 1 Hz. 

1.5 Organization of the Thesis 

This thesis consists of 5 chapters and the following chapters are organize as follows: 
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Chapter 1 is the introduction of the thesis mainly discussing the problem statements and 

objectives of the research. This chapter highlights the objective and scope of the research. 

 

Chapter 2 is literature review done throughout this research. This chapter discusses 

about other methods used to track the position of underwater vehicle and introduce acoustic 

positioning system. Motivation for extended research is also included in this chapter. 

 

Chapter 3 explains the methodology of the research. This chapter discuss about the 

equipment used and the phases involve in achieving the research objectives.  

 

Chapter 4 visualize and discuss the results obtained from this research. The fusion of 

UGPS and IMU results and shown and discussed and the filtered EKF is observed and 

evaluated in this chapter. 

 

Chapter 5 summarizes and concludes the overall research as well as highlighting 

achievements of objectives and the future works.  
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