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ABSTRACT 

This project explores and studies the application of Model Predictive Control 

(MPC) to an overhead crane system. Overhead crane is a machine used in industrial 

site such as construction and manufacturing site, in order to move hazardous materials 

or heavy loads from current place to another desired location. While transporting the 

payload to desired place, the payload oscillation must be minimized for a safety 

operation. This makes an overhead crane to be an under-actuated system that need to 

control more process variables with less manipulated variables. Due to this complexity 

of the dynamical system, it is very challenging to reduce or eliminate the payload 

swing angle during the trolley positioning. In addition, constraint is needed to be 

concerned when designing a controller for the overhead crane system. Therefore, MPC 

which has the advantage of dealing with constraint, is proposed to have more precise 

trolley positioning and low payload oscillation during the crane motion. The project 

starts by deriving the mathematical model using the Euler-Lagrange equation of an 

overhead crane system. Then, Optimal Predictive Control (OPC), which is one of the 

type of MPC, was selected for MPC design and then applied to the overhead crane 

system in a simulation. The result shows that all constraints were satisfied when the 

overhead crane system was controlled by using OPC. Subsequently, the MPC design 

was implemented on a laboratory scale crane to investigate the real-time 

implementation and performance of the controller. The result shows that a desired 

steady-state value can be achieved in the experiment. However, for transient response, 

there was a slight deviation for the system responses between the simulation and 

experiment, which may be due to the deviation between model in simulation and the 

laboratory crane system. 

Keywords: Overhead crane, Model Predictive Control and Optimal Predictive Control. 
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ABSTRAK 

Projek ini bertujuan menerokai aplikasi Kawalan Ramalan Model pada sistem 

kren jambatan. Kren jambatan adalah mesin yang digunakan di tapak perindustrian 

seperti tapak pembinaan dan kawasan pembuatan, bagi mengangkut bahan merbahaya 

atau muatan berat dari tempat semasa ke tempat baru yang dikehendaki. Apabila 

mengangkut muatan ke tempat yang dikehendaki, ayunan muatan mesti dikurangkan 

untuk keselamatan semasa operasi. Fenomena ini menjadikan sistem kren jambatan 

sebagai sistem kurang tindakan yang mana sistem ini perlu menggunakan sedikit 

pembolehubah manipulasi untuk mengawal pembolehubah proses yang mempunyai 

kuantiti yang lebih banyak. Oleh kerana kerumitan sistem dinamik yang sebegini, 

proses mengurangkan ayunan muatan ketika muatan diangkut adalah sangat mencabar. 

Tambahan pula, kekangan perlu diambil kira ketika mereka bentuk pengawal bagi 

sistem kren jambatan. Oleh yang demikian, Kawalan Ramalan Model (MPC) yang 

mempunyai kelebihan dalam mengurus kekangan, dicadangkan untuk digunakan bagi 

mendapatkan pergerakan kren yang lebih tepat dan juga ayunan muatan yang lebih 

minimum apabila kren bergerak. Projek ini bermula dengan penghasilan model 

matematik menggunakan persamaan Euler-Lagrange untuk sistem kren jambatan, 

diikuti dengan mereka bentuk MPC menggunakan Kawalan Ramalan Optimum (OPC) 

yang merupakan salah satu jenis dari MPC, untuk diaplikasikan kepada sistem kren 

jambatan dalam simulasi. Hasilnya, semua kekangan berjaya dipenuhi apabila sistem 

kren jambatan dikawal menggunakan OPC. Kemudian, proses mereka bentuk MPC 

diaplikasikan terhadap kren makmal untuk mengkaji aplikasi pada masa sebenar dan 

prestasi pengawal. Hasilnya, nilai keadaan tunak yang dikehendaki berjaya dicapai 

dalam eksperimen. Namun yang demikian, bagi respon sewaktu keadaan sementara, 

wujudnya perbezaan yang sedikit antara respon dari simulasi dibandingkan dengan 

yang di eksperimen, yang disebabkan oleh perbezaan antara model dari simulasi dan 

kren makmal. 

Kata kunci: Kren jambatan, Kawalan Ramalan Model dan Kawalan Ramalan 

Optimum. 
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CHAPTER 1 

 

 INTRODUCTION 

 

 

1.1 Research Background 

 

Crane is a machine that is used to move hazardous materials or heavy loads 

from a current place to another desired location. This machine is commonly used in 

industrial sites such as manufacturing and construction sites. Cranes can be classified 

into 3 types, according to their motions and their structures: (a) overhead/gantry crane, 

(b) tower/rotary crane and (c) boom crane. All of these types of crane can be referred 

as in Figure 1.1.  

 

 

(a) 

 

 

(b) 
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(c) 

Figure 1.1  Types of cranes : (a) An overhead/gantry crane 

(b) A tower/rotary crane (c) A boom crane 

 

Crane system is actually an under-actuated system [1] since the number of 

actuators used in the crane are less than its degrees of freedom. So it is difficult to 

control more process variables with less manipulated variables. For a basic crane 

system, a force input is applied to move the payload to desired place while minimizing 

the payload oscillation, in order to ensure safety during operation of crane, and also 

for a smooth and efficient way to handle the crane during the operation [2]. If the 

payload oscillation is not minimized, it will affect the accuracy of crane positioning, 

the safety during operation and also the quality of crane handling [3]. In industrial site, 

a failure in controlling the payload oscillation can make the operator faces the 

difficulty during handling the crane, and would also downgrade the condition of the 

load or the operating environment around that site. Production volume will also be 

slower if time required to complete this task of moving the payload to desired place 

while minimizing the payload oscillation, become longer. 

 

In addition, the changes in mass of payload and also the varying length of 

payload cable due to payload hoisting, may induce payload swinging, twisting and 

bouncing [4]. These factors will cause an excessive payload swing that makes the 

operator become more difficult to operate the crane in order to get a good and accurate 

crane positioning with minimum payload oscillation. Due to this matter, research on 

payload swing control is still relevant nowadays, and remains as one of the interested 

research problem among researchers that are involved in designing control algorithm 

for the under-actuated crane system. 
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For the proposed controller of MPC, it is actually a discrete closed-loop 

optimal control algorithm. MPC has been used for controlling many systems, such as 

control of an overhead crane system [5], [6], [7], [8] which is the main focus in this 

research work. This controller is widely used because it has lot of advantages 

compared to conventional controller [9], especially in term of handling with 

constraints [10], [11]. It has been proved that MPC has achieved not only satisfied 

performance of stability and robustness [12], but this controller also can deal with 

nonlinearity as well [13], [14]. 

 

 

1.2 Problem Statement 

 

Overhead crane system is an under-actuated system that need to control more 

process variables while operating less manipulated variables. Therefore, it is difficult 

to balance the performance of all output in one time [15]. For example, a specific 

controller can be designed to get very fast response for the trolley displacement. 

However, system response for the payload oscillation will get worse due to this 

controller design. If controller designer put more priority on getting very low 

oscillation for the payload swing, system response for the trolley displacement will be 

slower. This is the challenge while designing control algorithm for underactuated 

system like overhead crane system. While aiming for the best response for all output, 

input constraint need to be considered to prevent actuator from getting damage. For 2-

D overhead crane with hoisting payload [4], [16], the number of actuators has 

increased from 1 to 2 motors in order to drive both trolley and hoisting movement. The 

increase of number of actuators will increase the number of constraints needed to be 

concerned [10], [11], and controller will be more difficult to be designed for more 

complex multivariable system. 
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1.3 Research Objectives 

 

 The objectives of this research work are as follows : 

i. To obtain a dynamic model of an overhead crane with experimental validation. 

ii. To design and simulate MPC for control of an overhead crane. 

iii. To analyze MPC design at real overhead crane system and validate its 

performance in real-time implementation. 

 

 

1.4 Research Scopes 

 

 The scopes of this research work are as follows : 

i. A single pendulum overhead crane is considered. 

ii. Both simulation and experimental work are carried out. 

iii. Optimal Predictive Control is considered for control design. 

iv. The payload cable is assumed to be inextensible. 

v. The payload is considered as a point mass. 

 

 

1.5 Outline of the Report 

 

This report is organized in five chapters, which are Introduction, Literature 

Review, Research Methodology, and Results and discussions. Firstly, Introduction is 

consists of research background, problem statement, objectives, and scopes of this 

research work. Chapter 2 presents literature review about the application of MPC for 

an overhead crane system from past research. Chapter 3 is about research methodology 

which is consists of its guidelines and management for this research work. Chapter 4 

highlights results and discussion about the performance of MPC design for an 

overhead crane system, for both simulation and experimental work. Finally, chapter 5 

provides conclusion and future works. 
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