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ABSTRACT 

This project outlines the design of a flood monitoring system to obtain accurate 

data on river overflows. Additionally, it provides the machine learning technique, to 

predict the arrival of floods, by considering the rainfall data and water level from 

previously available data to predict the rainfall and water level for the next hours. The 

problem is the shortage of flood information in areas that are constantly flooded leads 

to malfunction in analysing the flood reasons. In addition, the fuzzy and unpredicted 

situation of the flood. Moreover, there is no flood data analysis so action can be taken 

based. Finally, data is not visualized in a Dashboard, so they can have a deeper look at 

the situation. The object of this study is to design an IoT flood monitoring system 

based on two water level sensors and a rain gauge sensor. In addition, to forecast the 

flood based on Long Short-Term Memory (LSTM) networks for historical data and 

the data collected from the monitoring system. The monitoring system utilizes a 

submersible water level sensor that measures the water level. Additionally, the tipping 

bucket rainfall sensor measures the rain gauge and tests the rainfall in the natural 

environment. The system is based on IoT to provide real-time data. The recorded data 

is transmitted to the cloud via a GSM network and displayed on an online platform. 

The flood forecasting model used Long Short-Term Memory (LSTM) networks to 

predict future floods. The aim of this case study is to contribute to the reduction of 

casualties and flood damage in streams, as well as to the development of more accurate 

flood forecasting in typical urban flood risk locations. The result was experimented 

with using historical data since the current data is insufficient yet to make an accurate 

prediction. The main findings of the research are the predicted values of streamflow 

and rainfall for historical data, also water level and rain gauge for new data. The 

forecasting method that applied LSTM showed high accuracy of the result reaching 

more than 90% with evaluation errors for historical data MAE, RMSE and MSE are 

0.93, 1.7 and 3.025 respectively. Also, 0.0055, 0.3325 and 0.1175 for new data 

respectively. The developed monitoring system and flood forecasting can be used 

efficiently as a non-structural solution to alleviate the damage caused by urban floods. 
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ABSTRAK 

Projek ini menggariskan reka bentuk sistem pemantauan banjir untuk 

mendapatkan data yang tepat mengenai limpahan sungai. Selain itu, ia menyediakan 

teknik pembelajaran mesin, untuk meramalkan ketibaan banjir, dengan 

mempertimbangkan data hujan dan paras air daripada data yang tersedia sebelum ini 

untuk meramalkan hujan dan paras air untuk jam berikutnya. Masalahnya ialah 

kekurangan maklumat banjir di kawasan yang sentiasa dinaiki air menyebabkan tidak 

berfungsi dalam menganalisis punca banjir. Selain itu, keadaan banjir yang kabur dan 

tidak dijangka. Selain itu, tiada analisis data banjir jadi tindakan boleh diambil 

berdasarkan. Akhir sekali, data tidak divisualisasikan dalam Papan Pemuka, supaya 

mereka boleh melihat situasi dengan lebih mendalam. Objektif kajian ini adalah untuk 

mereka bentuk sistem pemantauan banjir IoT berdasarkan dua penderia aras air dan 

penderia tolok hujan. Di samping itu, untuk meramalkan banjir berdasarkan rangkaian 

Long Short-Term Memory (LSTM) untuk data sejarah dan data yang dikumpul 

daripada sistem pemantauan. Sistem pemantauan menggunakan sensor paras air 

tenggelam yang mengukur paras air. Selain itu, sensor hujan baldi tipping mengukur 

tolok hujan dan menguji hujan dalam persekitaran semula jadi. Sistem ini berdasarkan 

IoT untuk menyediakan data masa nyata. Data yang direkodkan dihantar ke awan 

melalui rangkaian GSM dan dipaparkan pada platform dalam talian. Model ramalan 

banjir menggunakan rangkaian Memori Jangka Pendek Panjang (LSTM) untuk 

meramal banjir akan datang. Matlamat kajian kes ini adalah untuk menyumbang 

kepada pengurangan mangsa dan kerosakan banjir di sungai, serta pembangunan 

ramalan banjir yang lebih tepat di lokasi risiko banjir bandar biasa. Hasilnya telah diuji 

dengan menggunakan data sejarah kerana data semasa tidak mencukupi lagi untuk 

membuat ramalan yang tepat. Penemuan utama penyelidikan adalah nilai ramalan 

aliran sungai dan hujan untuk data sejarah, juga paras air dan tolok hujan untuk data 

baharu. Kaedah peramalan yang menggunakan LSTM menunjukkan ketepatan 

keputusan yang tinggi mencecah lebih daripada 90% dengan ralat penilaian untuk data 

sejarah MAE, RMSE dan MSE masing-masing ialah 0.93, 1.7 dan 3.025. Juga, 0.0055, 

0.3325 dan 0.1175 untuk data baharu masing-masing. Sistem pemantauan yang 

dibangunkan dan ramalan banjir boleh digunakan dengan cekap sebagai penyelesaian 

bukan struktur untuk mengurangkan kerosakan yang disebabkan oleh banjir bandar. 
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CHAPTER 1 

INTRODUCTION 

The floods prediction system has been improved to guarantee that society is 

alerted to flood disasters with little damage. Standard management measures have been 

implemented to reduce the likelihood of a flood disaster occurring in a potentially at-

risk location. All angles of all areas and disciplines have been called upon to 

collaborate in mitigating the effects of the flood calamity. Government and non-

government sectors have emphasised pre-, during-, and post-flood management in an 

effort to lessen the flood's aftermath. This project aims to improve the timeliness and 

accuracy of flood prediction systems considering the significance of making a little 

contribution to flood. While in this chapter, it covers the background concept for this 

project, which has driven the development of its ideas. Moreover, the structure of this 

study, the problem statement, objectives, and scope of the project will be discussed. 

1.1 Problem Background 

1.1.1 Effects of Flood 

Floods are one of the most prevalent and destructive natural dangers in the 

world [1] [2]. Between 1996 and 2015, the United Nations Office for Disaster Risk 

Reduction reports that 150,016 floods occurred, severely damaging natural systems 

and human activities [3]. Floods in previous years have been the most expensive 

calamities in terms of property damage and human losses. These floods result in 

significant losses and destruction, as well as catastrophic socioeconomic, hydrological, 

and climatic secondary repercussions [4]. For instance, in 1938, 1966, 1981, 1997, and 

1998, several sections of Europe witnessed major summer floods, compromising their 

economic and environmental conditions [5]. More than 15.5 billion euros in damage 
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was inflicted by the Arno River floods in Italy [6]. Between 1989 and 1999, floods in 

the United States claimed at least 988 lives and caused economic damages of around 

4.5 billion dollars [5]. Climate change is considered to be responsible for natural 

catastrophes such as flooding and tropical cyclones, which are thought to be triggered 

by extreme weather conditions as well as changes in global and regional climate. 

Flooding has three distinct effects: the primary, secondary, and tertiary effects. The 

primary effects of floods are those experienced by individuals who come in direct 

contact with floodwaters. Secondary effects include disruptions to infrastructure and 

services, as well as health consequences, whereas tertiary effects are long-term 

changes that occur, such as changes in the position of river channels [7] 

 

 

 

1.1.2 Effect of Flood in Malaysia 

Floods are one of the most common natural disasters in Malaysia, occurring 

virtually every year, particularly during the monsoon season[8]. Previously, the worst 

flood in Malaysian history happened in 2014 [9]. More than 200,000 people were 

affected while 21 were killed. The major disasters happened in the several states on 

the east coast side of Peninsular Malaysia. The estimated cost of damages was over 

one billion as reported in [10]. According to [11] floods struck Pahang in January 2018, 

resulting in the deaths of two people and the evacuation of approximately 12,000 

people. Recently, the last flood happened in 2021, floods caused by rivers flowing into 

the mainland have inundated many areas, ruined buildings, blocked off important 

highways, and affected the provision of basic services such as water, food and health 

care. According to [12] more than 18,000 families have affected by this flood. The 

climatic conditions in Malaysia and the heavy rains make it an area with a high risk of 

flooding. The impact of the flood is huge, and it is not happening in Malaysia but all 

over the world. The effects of floods could be mitigated by having a flood prediction 

using flood monitoring system data that allows the residents to be informed quickly 

and efficiently. Figure [1.1] illustrate the frequency of natural disasters that occurred 

in Malaysia, from 1965 to 2016. 
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Figure 1.1 Percentage of types of disaster in Malaysia 1965-2016[9] 

 

Specifically, two forms of flooding commonly occur in Malaysia, namely 

monsoon floods and flash floods. Monsoon flooding often occurs from May to August 

(Southwest Monsoon) and from November to February (Northeast Monsoon) 

(Northeast Monsoon) [13]. In contrast, flash floods commonly occur in urban areas. It 

is the result of unrestricted human activity, such as the construction of infrastructure 

near river regions and the disposal of rubbish, which clogs drains and waterways [14].  

 

In the state of Johor, the Johor River basin is the primary source of drinking 

water for household usage, not only for the state of Johor but also for Singapore. This 

river basin comprises fourteen percent of Johor. The occurrence of flooding in this 

river basin will have severe consequences for the water supply, damage of 

infrastructure, and populations in the river basin's vicinity. The Northeast monsoon has 

the greatest impact on flooding in Johor. Changes in land use in a specific region as a 

result of deforestation for palm plantations influence the rate of surface runoff into the 

river, which may result in excessive sedimentation. This will result in alterations to the 

water level in the Johor River basin. If citizens in the river basin are not forewarned of 

the impending flood at an early stage, this circumstance might result in significant 

complications. A delayed emergency response plan may result in the destruction of 

structures and facilities, with death as the worst possible outcome [15]. During the 

recent floods in Johor in 2006–2007, a couple of very strong rainfall storms produced 

major flooding. The estimated overall cost of these flood disasters in terms of property 

loss was USD 0.5 billion, making it one of the most expensive flood occurrences in 

48%

17%
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7%
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4% 2%

Flood epidemic Storm Wildfire
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Malaysian history. At the height of the recent Johor flood, around 110,000 people were 

evacuated and relocated to rescue shelters, and 18 people perished [16]. 

  

 

 

1.2 Internet of Things (IoT) 

The Internet of Things (IoT) refers to the connection of physical devices, cars, 

buildings, and other items embedded with electronics, sensors, actuators, 

communication protocols, and software that collect, share, store, analyse, and process 

data [17]. Experts estimate that the number of IoT devices worldwide is forecast to 

almost triple from 8.74 billion in 2020 to more than 25.4 billion IoT devices in 2030 

[18]. According to most researchers, IoT architecture consists of five levels. Figure 

[1.2] illustrates the conventional IoT architecture[19]. 

 

 

Figure 1.2 Five-layer architecture of IoT 

 

The perception layer is the physical layer, which contains sensors, actuators, 

and edge devices that interact with the environment. Some physical parameters are 

sensed in the surroundings, and other intelligent items are discovered. The transport 

layer transfers sensor data from the perception layer to the processing layer and vice 

versa through networks such as GSM, Bluetooth, Wi-Fi, LAN, and Lora WAN etc.  
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The processing layer is also referred to as the middleware layer. the large data 

sets are analysed, stored, and processed. Databases, cloud computing, and large data 

processing resources may be used. The application layer is responsible for providing 

the user with specific application services. It defines several IoT applications, 

including smart homes, smart cities, and intelligent health. The entire IoT system is 

managed by the business layer, including applications, business and business models, 

and user privacy. 

 

 

 

1.2.1 IoT Elements 

The structure of IoT, shown in Figure [1.30], is based on five main components 

which are the things or device (sensor nodes), field getaway, cloud, storage and 

analytic [20]. 

 

Figure 1.3 IoT elements 

 

The term "thing" refers to any device or sensor equipped with an embedded 

system capable of connecting to the Internet. They are low-power sensors that detect 

a single object. Such as water level, Temperature, GPS location, and motion. These 

devices, or sensors, are constantly collecting data from their surroundings and passing 

it to the next layer via low-power wireless networks such as GSM, Wi-Fi, Bluetooth, 

LoRAWAN and Z-wave etc.  
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Field gateways, or gateways, are intelligent devices that serve as a connection 

point between sensors and the cloud. It enables IoT connectivity and data transmission 

in both directions between networks and protocols. This is necessary because the 

sensors are small/low-power devices and transmitting data via a wire consumes a lot 

of electricity. As a result, gateways are required to conduct this function on the sensor's 

behalf. Additionally, the gateway may translate several network protocols and assure 

device and sensor interoperability. Additionally, it stores, and pre-processes data 

acquired from thousands of sensors on-premises prior to uploading it to the cloud. 

 

The cloud gateway is the most critical component of the Internet of Things 

system. It serves as the cloud gateway for messages sent by devices. This is the point 

of entry for the IoT system. Its responsibility is to aggregate and manage massive 

processing data in real-time, then store it for analysis over time. Generally, it does not 

process data. Users can simply gain remote access to this data and make critical 

decisions as needed. 

 

Message processor: The data collected from various devices are decoded, 

filtered according to their characteristics, processed for information retrieval, and 

finally stored in a structured manner. Typically, this component is developed on a case-

by-case basis in accordance with the needs. 

 

Storage is the place to save the messages/data after processing and filtering. 

The results in this section are derived from data collected from devices. The incoming 

data will be analyzed using a data analytics engine to find patterns and abnormalities. 

This can also be a component of machine learning. Essentially, all the data we received 

and processed in the earlier steps are being used. 

 

Monitoring Dashboard: Finally, the result accomplished is needed to showcase 

in a structured manner by reporting component. This might be a basic excel sheet with 

some charts or it can be a standalone business intelligence dashboard. 
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1.3 Machin Learning and Deep Learning 

Machine learning (ML) is a subfield of artificial intelligence (AI) that is used 

to infer regularities and patterns. It enables easier implementation with low 

computation costs, as well as fast training, testing, validation and evaluation while 

maintaining high performance in comparison to physical models [21]. Fundamentally, 

machine learning involves the use of algorithms to extract information from 

unprocessed data and describe it using a model. We utilize this model to make 

inferences about data that has not yet been modelled. Neural networks are one sort of 

machine learning model that has existed for at least fifty years. A node, which is 

loosely based on the biological neuron in the human brain, is the fundamental unit of 

a neural network. The connections between neurons are also modelled after actual 

brains. In the early 2000s, computer power grew tremendously, and the industry 

witnessed a "Cambrian explosion" of previously impossible computational 

approaches. Deep learning developed as a strong contender in the industry as a result 

of the decade's tremendous rise in processing power, winning several significant 

machine learning contests. The field of AI is broad and has been around for a long 

time. Deep learning is a subset of the field of machine learning, which is a subfield of 

AI as shown in Figure [1.4] [22]. 

 

 

Figure 1.4 The relationship between AI and deep learning 
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Machine learning algorithms can either be supervised or unsupervised. The 

difference between these two main classes is the existence of labels in the training data 

subset as shown in Figure [1.5]. According to [23], supervised machine learning 

involves predetermined output attributes besides the use of input attributes. The 

algorithms try to forecast and classify the specified attribute, and their accuracies and 

misclassifications, in addition to other performance metrics, are reliant on the counts 

of the predetermined attribute that have been successfully predicted or categorized or 

not. It is also essential to note that the learning process concludes when the algorithm 

reaches a satisfactory level of performance [24]. Technically, according to [25], 

supervised algorithms execute analytical tasks using training data before constructing 

contingent functions for mapping new occurrences of the characteristic. The methods 

for supervised learning are further divided into classification and regression algorithms 

[24]. 

 In contrast, unsupervised learning includes the detection of patterns without a 

desired characteristic. Due to the strategy and the fact that all variables utilized in the 

study are inputs, the approaches are ideal for clustering. According to [26], 

unsupervised learning algorithms are appropriate for labelling the data, which is then 

used to complete supervised learning tasks. In other words, unsupervised clustering 

algorithms find intrinsic groups within unlabeled data and then label each data value 

[24]. Unsupervised association mining algorithms, on the other hand, have a tendency 

to identify rules that properly describe associations between characteristics. 
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Figure 1.5 Machine learning techniques 

 

 

 

1.4 Problem Statement 

Flash floods and other flood-related disasters are becoming a common source 

of human loss and property damage in Malaysia. As a result, damage will happen to 

public buildings, roads, and cabling systems. More vehicles will be stuck in traffic, 

which will lead to more delays in public transportation and an increased risk of traffic 

collisions and other accidents and so on. Based on that, we can list our problem 

statement as four main points. First of all, the shortage of flood information in areas 

that are constantly flooded leads to malfunction in analyzing the flood reasons. 

Secondly, the fuzzy and unpredicted situation of the flood. Moreover, there is no flood 

data analysis so action can be taken based. Finally, data is not visualized in a 

Dashboard, so they can have a deeper look at the situation. 
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1.5 Research Objectives 

a) To design an IoT flood monitoring system based on two water level sensors 

and rain gauge sensor 

b) To forecast the flood based on Long Short-Term Memory (LSTM) networks 

for historical data and the data collected from the monitoring system 

 

 

 

 

1.6 Research Scope 

This study presents a flood forecasting and warning method based on two 

different datasets and a deep learning technique to prevent casualties in an urban 

stream from urban flash floods and reduce urban flood damages. the first dataset 

(historical data) is collected from hydrological stations in JB at three different stations 

between the 1st of June 2010 and until 1st of Dec 2012. The historical data is two 

Rainfall data and one streamflow data. The second dataset is collected from the 

designed IoT monitoring system for one month (10th of May until 11th of June 2022). 

the data collected from UTM campus is with two submersible water level sensors and 

one rain gauge which is the tipping bucket rainfall sensor. The collected data is 

transmitted to the cloud by GSM network and then displayed by using a developed 

platform/dashboard to show sensors' data. 
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