
 

 

IMPLEMENTATION OF FRACTAL IMAGE COMPRESSION 

ON XPU ARCHITECTURE USING INTEL oneAPI™ APPROACH 

 

 

 

 

 

 

 

 

 

 

 

 

MOHAMMAD ADIB BIN MD DAN 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA



IMPLEMENTATION OF FRACTAL IMAGE COMPRESSION 

ON XPU ARCHITECTURE USING INTEL oneAPI™ APPROACH 

MOHAMMAD ADIB BIN MD DAN 

A project report submitted in fulfilment of the  

requirements for the award of the degree of 

Master of Engineering (Computer and Microelectronic System) 

School of Electrical Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

JULY 2022 



iv 

DEDICATION 

This thesis is dedicated to my old self, who taught me that the best kind of 

knowledge to have is that which is learned for its own sake and never giveup even 

everything are falling apart. It is also dedicated to my parent, who taught me that 

even the largest task can be accomplished if it is done one step at a time. 



v 

ACKNOWLEDGEMENT 

In the name of Allah, the Most Gracious, and the Most Merciful. 

Alhamdulillah, all praise to Allah SWT for granting me the health and strength 

in completing this final year project. In preparing this thesis, I was engaged with many 

parties, technical leads, academicians, and the Intel developer community. They have 

contributed to my understanding and thoughts. In particular, I wish to express my 

sincere appreciation to my supervisor, Dr. Abdul-Malik Haider Yusef Saad, for his 

encouragement, guidance, advice, and motivation. Without their continued support 

and guidance, this thesis would not have been the same as presented here. 

I am also indebted to Intel Corporation especially Programmable Solution 

Group (PSG Penang) for funding my study. Academicians at UTM also deserve 

special thanks for their assistance in supplying the relevant literature and directions. 

My fellow postgraduate friends especially Nadia, Syasya, Asyikin, few of my 

Intel colleagues Faaruuq and Eddy for their strong support through various stages 

along the master journey. My sincere appreciation also extends to Intel oneAPI 

developer team located in Santa Clara and my manager for the help on this project. 

Lastly, my sincere appreciation and thank you go to my parent and my family 

who always become my pillar of strength, and give endless encouragement and support 

to complete this final year project and masters program. 



vi 

ABSTRACT 

Images are stored and processed on computers as collections of bits 

representing pixels or points forming the picture elements. Fractal Image Compression 

(FIC) is based on the search for self-similarity in the image, and it can provide a high 

compression rate to minimize the usage of memory. However, FIC Algorithm 

techniques take a long time to encode an image. It requires performing an enormous 

number of matching operations. To speed up the process, multiple improvements in 

terms of hardware and software have been done. This paper proposes another approach 

to support flexibility and portability for FIC implementation. Nowadays, there are 

diverse methods of fractal image compression. Most of the methods establish a 

commitment between fast coding, image quality, and compression rate. Nevertheless, 

these methods are difficult to be implemented due to several limitations. Thus, we will 

develop and implement FIC Algorithm on CPU, GPU, and FPGA based on a single 

source code.  In this work, the implementation of the FIC Algorithm on XPU is using 

oneAPI™ base toolkit and its library. Furthermore, the framework was developed 

using the Data-Parallel C++ programming language (DPC++) and executed on diverse 

heterogeneous hardware architectures such as CPU, GPU, and FPGA. This approach 

achieves 52 times execution time speed-up between CPU and GPU implementation 

and significant improvement between targeted XPU architecture. 



vii 

ABSTRAK 

Imej disimpan dan diproses pada komputer sebagai koleksi bit yang mewakili 

piksel atau titik yang membentuk elemen gambar. Pemampatan Imej Fraktal (PIF) 

adalah berdasarkan pencarian persamaan diri dalam imej, dan ia boleh memberikan 

kadar mampatan yang tinggi untuk meminimumkan penggunaan memori. Walau 

bagaimanapun, teknik Algoritma FIC mengambil masa yang lama untuk mengekod 

imej. Ia memerlukan melaksanakan sejumlah besar operasi pemadanan. Untuk 

mempercepatkan proses, pelbagai penambahbaikan dari segi perkakasan dan perisian 

telah dilakukan. Kertas kerja ini mencadangkan pendekatan lain untuk menyokong 

fleksibiliti dan mudah alih untuk pelaksanaan PIF. Pada masa kini, terdapat pelbagai 

kaedah pemampatan imej fraktal. Kebanyakan kaedah mewujudkan komitmen antara 

pengekodan pantas, kualiti imej dan kadar mampatan. Namun begitu, kaedah ini sukar 

dilaksanakan kerana beberapa batasan. Oleh itu, kami akan membangunkan dan 

melaksanakan Algoritma Pemampatan Imej Fraktal pada CPU, GPU dan FPGA 

berdasarkan kod sumber tunggal. Dalam kerja ini, pelaksanaan Algoritma FIC pada 

XPU menggunakan kit alat asas oneAPI™ dan perpustakaannya. Tambahan pula, 

rangka kerja telah dibangunkan menggunakan bahasa pengaturcaraan Data-Parallel 

C++ (DPC++) dan dilaksanakan pada seni bina perkakasan heterogen yang pelbagai 

seperti CPU, GPU dan FPGA. Pendekatan ini mencapai 52 kali percepatan masa 

pelaksanaan antara pelaksanaan CPU dan GPU dan peningkatan ketara antara seni bina 

XPU yang disasarkan. 



viii 

TABLE OF CONTENTS 

TITLE PAGE 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xi 

LIST OF FIGURES xii 

LIST OF ABBREVIATIONS xv 

LIST OF SYMBOLS xvi 

LIST OF APPENDICES xvii 

CHAPTER 1 INTRODUCTION 1 

1.1 Problem Background 1 

1.2 Problem Statement 2 

1.3 Research Objectives 3 

1.4 Research Scopes 3 

1.5 Thesis Outline 4 

CHAPTER 2 LITERATURE REVIEW 5 

2.1 Introduction 5 

2.2 Theory of Fractal Image Compression 6 

2.3 The Speed-up Approaches 9 

2.4 The Heterogeneous System 9 

2.5 oneAPI™ Programming Model 11 

2.5.1 Intel® oneAPI™ Software Architecture and 

Platform 13 



ix 

2.5.2 Data Parallel C++ Programming Language 

(DPC++) and oneAPI DPC++ Library 

(oneTBB) 16 

2.5.3 Code Execution Scheme in oneAPI DPC++ 17 

2.5.3.1 Host Code 18 

2.5.3.2 Device Code 18 

2.5.3.3 Targeting Devices for Execution 19 

2.6 FIC Implementation using various Software 

Framework and APIs Approach 24 

2.8 Summarized of Related Works 29 

CHAPTER 3 RESEARCH METHODOLOGY 33 

3.1 Introduction 33 

3.2 Flow Chart of Overall Development work 33 

3.3 Algorithm Development and Simulation using 

MATLAB® 35 

3.4 Base Code development using Native C++ 

Programming 36 

3.5 Data-Parallel C++ Programming Implementation 37 

3.6 DPC++ function and oneTBB Library Implementation 39 

3.7 The oneAPI™ Framework Integration 40 

3.7.1 DPC++ (SYCL*) Headers 41 

3.7.2 Catching async Exceptions from DPC++ 

Kernels 42 

3.7.3 Data management & Memory Allocation 

Strategy 43 

3.8 The Queue Execution 44 

3.8.1 Base Code Execution 45 

3.8.2 Host Code Execution 45 

3.8.3 Devices Code Execution 48 

3.9 Hardware and Devices Configuration 53 

3.9.1 Local Machine setup & configuration 55 

3.9.2 Intel DevCloud™ setup & configuration 55 

3.10 Code configuration & Environment setup 58 

3.11 Performance Profiling 60 



x 

3.11.1 Intel® Vtune™ Profiler Configuration 60 

3.11.2 PSNR 62 

3.11.3 Compression Rate 62 

3.11.4 Execution Time 63 

CHAPTER 4 RESULTS AND DISCUSSION 64 

4.1 Introduction 64 

4.2 MATLAB Simulation Result 64 

4.3 PSNR 66 

4.4 Compression Rate 67 

4.5 Data of Kernel Time for the Encoding process 68 

4.6 Execution Time Performance across the set of 

hardware Architecture 71 

4.6.1 Execution Strategy Analysis of CPU 74 

4.6.2 Execution Strategy Analysis of GPU 75 

4.7 Architecture Performance Comparison 77 

4.8 Execution Time Versus Static Power consumption 79 

4.9 Memory Model Implementation Performance 81 

4.10 Intel® Vtune™ Profiler Report Summary 82 

4.10.1 CPU IPC Analysis 83 

4.10.2 Memory Bound Analysis 84 

4.10.3 Microarchitecture Usage Analysis 85 

4.10.4 GPU Offload Analysis 87 

4.10.5 Core Utilization Analysis 88 

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 90 

5.1 Introduction 90 

5.2 Conclusion 90 

5.3 Future Recommendation 91 

93 

 104 - 115 

REFERENCES 

Appendices A – J 

 



 

xi 

 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 1 Memory Sharing Mechanism 14 

Table 2 Mechanisms and Methods to Control the Target Devices 

Code Executions 19 

Table 3 Comparison of reviewed journal of FIC implementation. 29 

Table 4 Command use for interaction with Intel DevCloud™ 56 

Table 5 The code configuration that we tested, the memory 

allocation method, and the Hardware resource used 58 

 

  



 

xii 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 1.1  The oneAPI Cross-Architecture framework overview[32]. 12 

Figure 1.2  The oneAPI interface[37]. 13 

Figure 1.3  Both host code (run on CPU) and devices code (runs on 

SYCL devices) in the Single-source code[28]. 17 

Figure 1.4  The figure a queue is bound and connected to a single 

device[28]. 21 

Figure 1.5  Multiple queues assigned or bound to a single device[28]. 22 

Figure 1.6  The figure host devices are always available and can 

execute the device code like any other hardware 

accelerator[28]. 23 

Figure 1.7  The figure shows the queue bound to CPU devices available 

to execute the task[28]. 23 

Figure 1.8  The figure shows the research gap to fill in the blue box. 31 

Figure 3.1 Flowchart of overall development. 34 

Figure 3.2 The figure shows an image of Lena size of 256 X 256 in 

grayscale. 35 

Figure 3.3 The figure shows a snippet of the base code of 

Domain_sum_of_whole_pool implemented in native C++. 36 

Figure 3.4 Host code implemented in DPC++ programming with 

native C++ memory allocation. 38 

Figure 3.5 Host code implemented in native DPC++ programming 

with USM memory allocation. 38 

Figure 3.6 DPC++ header to support diverse hardware accelerators. 41 

Figure 3.7 Demonstrates how to develop and create an exception 

handler with a catch async exception. 42 

Figure 3.8 Demonstrates the exception handler for FPGA 

devices_selector. 42 

Figure 3.9 System with multiple discrete memory. 43 

Figure 3.10 The figure shows the snippet of the host code implemented 

using DPC++ programming with Intel® oneTBB and set 

offload to CPU. 46 



 

xiii 

Figure 3.11 The figure shows CPU workgroup in concurrent as were 

using oneTBB for host code to run at local CPU as 

devices[28]. 47 

Figure 3.12 The figure shows the GPU work item is mapped to the 

SIMD lane[28]. 49 

Figure 3.13 The figure shows the terminal indicate after running sycl-

ls for GPU. 50 

Figure 3.14 Example of device_selector in oneAPI framework. 50 

Figure 3.15 The figure shows the code snippet for the FPGA Emulation 

execution of kernel function 

Domain_sum_of_whole_pool_dpc. 52 

Figure 3.16 The figure shows the overall flow chart of code flow and 

where the code is executed on the hardware. 54 

Figure 3.17 The figure shows the overview of the client connection to 

the Vtune Profiler Server. 61 

Figure 3.18 The figure shows the code snippet for example how start 

and end time calculations are being developed in this 

project. 63 

Figure 4.1 The figure is the decoded image from MATLAB 

simulation. 65 

Figure 4.2 shows the horizontal bar graph comparison of PSNR 66 

Figure 4.3 shows the description of the image for compression rate 

calculation. 67 

Figure 4.4 show the result data of  single_task execution on the 

local machine. 68 

 Figure 4.5 show the result data of single_task execution on 

DevCloud 1. 69 

Figure 4.6 show the result data of single_task execution on 

DevCloud 2. 69 

 Figure 4.7 show the result data of parallel_for execution on the 

local machine. 70 

Figure 4.8 show the result data of parallel_for execution on 

DevCloud 1. 70 

 Figure 4.9 show the result data of parallel_for execution on 

DevCloud 2. 71 

Figure 4.10 shows a bar graph of the execution time of function 

implementation to the CPU. 72 



 

xiv 

Figure 4.11 shows a bar graph of the execution time of function 

implementation to the GPU. 73 

Figure 4.12 shows a performance comparison between CPU, GPU, and 

FPGA Emulation. 77 

Figure 4.13 shows the static power consumption versus execution time 

performance comparison of CPU. 79 

 Figure 4.14 shows the static power consumption versus execution time 

performance comparison of GPU. 80 

Figure 4.15 shows the comparison of execution time between USM and 

dynamic memory implementation. 81 

Figure 4.16 shows the CPU IPC comparison between DPC++ direct 

programming function implementation. 83 

Figure 4.17 shows the Memory Bound metric between DPC++ function 

implementation. 84 

Figure 4.18 shows Microarchitecture Usage data between DPC++ 

function implementation. 85 

Figure 4.19 shows the GPU Offload analysis of the overall code 

application. 87 

Figure 4.20 shows the data of core utilization analysis between DPC++ 

function implementation. 88 

 

  



 

xv 

LIST OF ABBREVIATIONS 

FIC - Fractal Image Compression 

DPC++ - Data-Parallel C++ 

API - Application Programming Interface 

OpenMP - Open Multi-Processing 

OpenCL - Open Computing Language 

XPU - CPU, GPU, FPGA, and ASIC 

CPU - Centre Processing Unit 

GPU - Graphic Processing Unit 

FPGA - Field Programmable Gate Array 

ASIC - Application Specific Integrated Circuit 

ISO - International Organisation for Standardization 

SOC - System-On-Chip 

GPGPU - General Processing using Graphic Processing Unit 

PSNR - Peak-Signal-to-Noise-Ratio 

OpenCV - Open Computer Vision 

USM - Unified Shared Memory 

DCT - Discrete Cosine Transform 

CAT - Contractive Affine Transformation 

SSH - Secure Shell 

GUI - Graphical User Interface 

ND - Dimension Work-Function 

SIMD - Single Instruction/Multiple Data 

  



 

xvi 

LIST OF SYMBOLS 

B - Brightness 

S - Contrast 

dB - Decibel 

Ri - Range block pixel 

Di - Domain block pixel 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

  



 

xvii 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

Appendix A MATLAB Code 104 

Appendix B Intel® oneAPI™ Development Environment Setup 107 

Appendix C Page to get Intel® oneAPI™ Base Toolkit 108 

Appendix D Cygwin Script 109 

Appendix E Intel® Core™ i7-8665U CPU Specification 110 

Appendix F Intel® Core™ i9-10920X X-series CPU specification 111 

Appendix G Intel® Iris® Xe MAX Graphics GPU specification 112 

Appendix H Intel® Xeon® E-2176G CPU specification 113 

Appendix I Python Script for PSNR 114 

Appendix J Project Development Code 115 

 

 

 

 



 

1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Image compression is critical for storing and transmitting visual data, which is 

the foundation for video and other multimedia applications. Images size grows rapidly 

as image quality and resolution ratio improves. Thus, this issue becomes a bottleneck 

in real-world applications. The increase in image size necessitates more storage space 

and bandwidth for transmission. In image processing, the question of how to reduce 

image size has become a hot topic[1], [2]. 

Moreover, Image compression and encoding may be accomplished using a 

variety of traditional known methods and standards. Classic image compression and 

encoding methods include Huffman Coding[3], Discrete Cosine Transformation 

(DCT)[4], wavelet image coding[5], and so on. Examples of these methods are BIG, 

H.263, JPEG, and MPEG. To compress images, the above-mentioned traditional 

approaches investigate the connection between pixels to reduce spatial or spectral 

redundancy[6]. The compression ratio, on the other hand, has now reached the 

bottleneck. As a result, new visual information redundancy reduction methods are 

required to achieve larger compression ratios[7]. 

Thus, the Fractal Image Compression (FIC) was introduced to tackle the 

compression method improvement. FIC is based on self-similarity between small and 

large parts of the image. Because the method of FIC is just storing the quantization 

parameters of Contractive Affine Transformation (CAT), it can reach a higher 

compression ratio in this case[8]. Eventually, the FIC method has drawbacks due to its 

high computational time and high resources needed. Over the years, many 



 

2 

enhancements, and improvements in terms of Software and Hardware to tackle the 

drawback of FIC. Thus this, paper we will present another improvement in terms of 

portability of software and hardware of FIC algorithm implementation. 

1.2 Problem Statement 

Based on the problem background discussed in the previous section. In this 

section, we will discuss and list the problem statement of the research. Firstly, FIC is 

a complex and intensive algorithm this is because the computational burden increase 

as the image size increase. For example, the M x M size of the image, the time 

complexity of the FIC algorithm is approximately O(n4). Moreover, the FIC problem 

due to its computational burden increase. Although many methods proved to improve 

the coding time. However, the runtime performance is still very low even with a 

search-less approach.  

Moreover, in modern hardware design with the presence of the heterogeneous 

hardware architecture. Due to its complex and intensive algorithm, that results in the 

adoption of heterogeneous parallelism of diverse hardware architecture such as CPU, 

GPU, FPGA, and ASIC known as XPU. This led to a surging interest in the 

exploitation of multiple hardware architectures instead of the CPU. Fourth is because 

of current development work of FIC improvement is bound to specific Architecture. 

For example, developers had to rely on either proprietary architecture-specific 

solutions like CUDA that only allow using NVIDIA hardware or low-level cross-

architecture solution that complicate development like OpenCL. 

Lastly, over the years, many adoptions of FIC algorithms across a diverse 

architecture but the developer still have the limitation of implementing this because of 

the lack of software framework, portability, and availability. The limitation of the 

common software stack for programming diverse hardware architecture causes 

developers had to use vendor-specific programming platforms and Application 



 

3 

Programming Interface (API) that gating the improvement of FIC computation across 

diverse hardware architectures.  

1.3 Research Objectives 

The research objective for this project is: 

I. To implement Fractal Image Compression Algorithm using oneAPI™ 

approach.  

II. To design the oneAPI™ Data-Parallel C++ framework for Fractal 

Image Compression Algorithm across XPU architecture.  

III. To explore the portability of oneAPI™ framework toward multiple 

XPU architectures.  

1.4 Research Scopes 

The research scope for this project is: 

I. This project will implement and use the conventional Fractal Image 

Compression (FIC) Algorithm. 

II. Only chosen loop available in the FIC algorithm will be implemented 

using Intel® oneAPI™ Data-parallel C++ (DPC++) direct 

programming function and Intel® oneAPI™ oneTBB library with 

Unified Shared Memory (USM) allocation strategy. 

III. In terms of software and API, the code will be written in Intel® 

oneAPI™ Data-parallel C++ and using a build-in Intel® oneAPI™ 

Base toolkit and library on the Microsoft Visual Studio platform and 

Intel® DevCloud™ platform.  

IV. The code will execute and test on hardware such as Intel® Core™ & 

Xeon™ CPU, Intel® iRIS® Xe™ MAX & Xeon™ Gold integrated 

GPU, and Intel® STRATiX™ 10 FPGA Emulation Platform.  



 

4 

V. Performance indicators will be discussed in terms of kernel 

computational runtime, Peak signal-to-noise ratio (PSNR), 

Compression rate, and Analysis from the Intel VTune profiler.  

1.5 Thesis Outline 

This thesis consists of five chapters. Chapter 1 discusses the research 

introduction, problem statement, objectives, and scope of this project. The main focus 

of this project is to implement the FIC Algorithm on XPU using the oneAPI approach.  

Chapter 2, will be discussed the theory of FIC, drawbacks of the Algorithm, 

oneAPI programming model and toolkit, Data-parallel C++ (DPC++), and the related 

work based on software and hardware approach. Moreover, also point out the research 

gap in this chapter.  

In Chapter 3, the techniques and methodology throughout the project are 

discussed. The method of coding the FIC algorithm using DPC++ will be discussed in 

detail. Moreover, the implementation of the oneAPI base toolkit is also discussed in 

Chapter 3. Lastly, the benchmarking of technique and implementation of the oneAPI 

approach is also will be discussed in detail.  

All results and discussion for this project will be presented in the next chapter, 

Chapter 4. The faced problem and gating solution to overcome the problems will be 

discussed in this chapter. The novelty of the results and findings will be mentioned in 

this chapter as well. Lastly, Chapter 5 will brief on the expected outcome of this project 

within the time allocated.  

 



 

93 

REFERENCES 

 

[1] A. Wakatani, “Improvement of adaptive fractal image coding on GPUs,” 

Digest of Technical Papers - IEEE International Conference on Consumer 

Electronics, pp. 255–256, 2012, doi: 10.1109/ICCE.2012.6161854. 

[2] A. Wakatani, “Preliminary implementation of two parallel programs for fractal 

image coding on GPUs,” Digest of Technical Papers - IEEE International 

Conference on Consumer Electronics, pp. 333–334, 2011, doi: 

10.1109/ICCE.2011.5722612. 

[3] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy 

Codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952, doi: 

10.1109/JRPROC.1952.273898. 

[4] “Discrete Cosine Transform: Algorithms, Advantages, Applications - K. 

Ramamohan Rao, P. Yip - Google Books.” 

https://books.google.com.my/books?hl=en&lr=&id=fWviBQAAQBAJ&oi=fn

d&pg=PP1&dq=K.+R.+Rao+and+P.+Yip,+Discrete+Cosine+Transform:+Alg

orithms,+Advantages,+Applications+(Academic+Press,+Cambridge,+MA,+2

014).&ots=1tKMym1hyB&sig=kudDCMAFFD78uonrAak9VX0b9Co&redir_

esc=y#v=onepage&q=K.%20R.%20Rao%20and%20P.%20Yip%2C%20Discr

ete%20Cosine%20Transform%3A%20Algorithms%2C%20Advantages%2C

%20Applications%20(Academic%20Press%2C%20Cambridge%2C%20MA

%2C%202014).&f=false (accessed Jan. 24, 2022). 

[5] C. Heil and D. F. Walnut, “Fundamental papers in wavelet theory,” 

Fundamental Papers in Wavelet Theory, pp. 1–878, Jan. 2009, doi: 

10.1515/9781400827268/HTML. 

[6] “Fractal Geometry: Mathematical Foundations and Applications - Kenneth 

Falconer - Google Books.” 

https://books.google.com.my/books?hl=en&lr=&id=JXnGzv7X6wcC&oi=fnd

&pg=PR5&dq=K.+Falconer,+Fractal+Geometry:+Mathematical+Foundations

+and+Applications+(John+Wiley+%26+Sons,+NY,+2004).&ots=FdWMdww

B0K&sig=3g4_DdTTJDnRX1iuDOilQ4F-



 

94 

Ny8&redir_esc=y#v=onepage&q=K.%20Falconer%2C%20Fractal%20Geom

etry%3A%20Mathematical%20Foundations%20and%20Applications%20(Joh

n%20Wiley%20%26%20Sons%2C%20NY%2C%202004).&f=false (accessed 

Jan. 24, 2022). 

[7] A. Wakatani, “Implementation of fractal image coding for GPGPU systems 

and its power-aware evaluation,” SysCon 2012 - 2012 IEEE International 

Systems Conference, Proceedings, pp. 64–68, 2012, doi: 

10.1109/SYSCON.2012.6189434. 

[8] A. M. H. Y. Saad, M. Z. Abdullah, A. M. Alduais Nayef, and A. S. H. Abdul-

Qawy, “An Improved Full-search Fractal Image Compression Method with 

Dynamic Search Approach,” Proceedings - 10th IEEE International 

Conference on Control System, Computing and Engineering, ICCSCE 2020, 

pp. 15–18, Aug. 2020, doi: 10.1109/ICCSCE50387.2020.9204926. 

[9] “An Introduction to Fractal Image Compression Literature Number: BPRA065 

Texas Instruments Europe,” 1997. 

[10] M. Joshi, A. K. Agarwal, and B. Gupta, “Fractal image compression and its 

techniques: A review,” in Advances in Intelligent Systems and Computing, 

2019, vol. 742, pp. 235–243. doi: 10.1007/978-981-13-0589-4_22. 

[11] E. Zhao and D. Liu, “Fractal Image Compression Methods: A Review *,” 

2005. 

[12] D. Sophin Seeli and M. K. Jeyakumar, “A Study on Fractal Image 

Compression using Soft Computing Techniques,” 2012. [Online]. Available: 

www.IJCSI.org 

[13] M. Galabov, “Fractal image compression,” in Proceedings of the 4th 

international conference conference on Computer systems and technologies e-

Learning - CompSysTech ’03, 2003, pp. 320–326. doi: 

10.1145/973620.973673. 

[14] Y. Fisher, Ed., Fractal Image Compression. New York, NY: Springer New 

York, 1995. doi: 10.1007/978-1-4612-2472-3. 

[15] IEEE Electrical Insulation Society Staff, 2013 18th Asia and South Pacific 

Design Automation Conference.  

[16] A. M. H. Y. Saad and M. Z. Abdullah, “High-speed fractal image compression 

featuring deep data pipelining strategy,” IEEE Access, vol. 6, pp. 71389–

71403, 2018, doi: 10.1109/ACCESS.2018.2880480. 



 

95 

[17] A. M. H. Y. Saad and M. Z. Abdullah, “High-speed implementation of fractal 

image compression in low cost FPGA,” Microprocessors and Microsystems, 

vol. 47, pp. 429–440, Nov. 2016, doi: 10.1016/j.micpro.2016.08.004. 

[18] T. Nguyen, “Implementation of Fractal image compression on FPGA,” 2012 

Fourth International Conference on Communications and Electronics (ICCE), 

Jan. 2012, Accessed: Dec. 31, 2021. [Online]. Available: 

https://www.academia.edu/29936487/Implementation_of_Fractal_image_com

pression_on_FPGA 

[19] M. Joshi, A. K. Agarwal, and B. Gupta, “Fractal Image Compression and Its 

Techniques: A Review,” Advances in Intelligent Systems and Computing, vol. 

742, pp. 235–243, 2019, doi: 10.1007/978-981-13-0589-4_22. 

[20] S. Bhavani and K. G. Thanushkodi, “Comparison of fractal coding methods 

for medical image compression,” IET Image Processing, vol. 7, no. 7, pp. 

686–693, 2013, doi: 10.1049/IET-IPR.2012.0041. 

[21] A. M. H. Y. Saad, M. Z. Abdullah, A. M. Alduais Nayef, and A. S. H. Abdul-

Qawy, “An Improved Full-search Fractal Image Compression Method with 

Dynamic Search Approach,” Proceedings - 10th IEEE International 

Conference on Control System, Computing and Engineering, ICCSCE 2020, 

pp. 15–18, Aug. 2020, doi: 10.1109/ICCSCE50387.2020.9204926. 

[22] A. M. H. Y. Saad and M. Z. Abdullah, “High-speed fractal image compression 

featuring deep data pipelining strategy,” IEEE Access, vol. 6, pp. 71389–

71403, 2018, doi: 10.1109/ACCESS.2018.2880480. 

[23] R. Hamzaoui and D. Saupe, “Fractal image compression,” Document and 

Image Compression, pp. 145–175, Jan. 2006, doi: 

10.1142/S0218348X94000442. 

[24] Md. E. Haque, A. al Kaisan, M. R. Saniat, and A. Rahman, “GPU Accelerated 

Fractal Image Compression for Medical Imaging in Parallel Computing 

Platform,” Apr. 2014, Accessed: Jan. 02, 2022. [Online]. Available: 

https://arxiv.org/abs/1404.0774v1 

[25] P. Palazzari, M. Coli, and G. Lulli, “Massively parallel processing approach to 

fractal image compression with near-optimal coefficient quantization,” 

Journal of Systems Architecture, vol. 45, no. 10, pp. 765–779, 1999, doi: 

10.1016/S1383-7621(98)00037-X. 



 

96 

[26] E. W. Jacobs, Y. Fisher, and R. D. Boss, “Image compression: A study of the 

iterated transform method,” Signal Processing, vol. 29, no. 3, pp. 251–263, 

1992, doi: 10.1016/0165-1684(92)90085-B. 

[27] U. Erra, “Toward Real Time Fractal Image Compression Using Graphics 

Hardware,” Lecture Notes in Computer Science (including subseries Lecture 

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3804 

LNCS, pp. 723–728, 2005, doi: 10.1007/11595755_92. 

[28] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and X. 

Tian, “Data Parallel C++,” Data Parallel C++, 2021, doi: 10.1007/978-1-

4842-5574-2. 

[29] “SYCL Overview - The Khronos Group Inc.” https://www.khronos.org/sycl/ 

(accessed Jan. 02, 2022). 

[30] Intel Corporation, “Intel ® oneAPI Programming Guide,” 2020. [Online]. 

Available: www.intel.com 

[31] Intel Corporation, “oneAPI Specification Release 1.1-rev-1 Intel,” 2020. 

[32] “Introduction — oneAPI Specification 1.1-rev-1 documentation.” 

https://spec.oneapi.io/versions/latest/introduction.html (accessed Jan. 01, 

2022). 

[33] “oneAPI Programming Model | oneAPI.” https://www.oneapi.io/ (accessed 

Jan. 01, 2022). 

[34] R. Nozal and J. L. Bosque, “Exploiting co-execution with oneAPI: 

heterogeneity from a modern perspective,” Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes 

in Bioinformatics), vol. 12820 LNCS, pp. 501–516, Jun. 2021, doi: 

10.1007/978-3-030-85665-6_31. 

[35] E. Marinelli and R. Appuswamy, “XJoin: Portable, parallel hash join across 

diverse XPU architectures with oneAPI; XJoin: Portable, parallel hash join 

across diverse XPU architectures with oneAPI,” Proceedings of the 17th 

International Workshop on Data Management on New Hardware (DaMoN 

2021), 2021, doi: 10.1145/3465998. 

[36] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and X. 

Tian, Data Parallel C++. Apress, 2021. doi: 10.1007/978-1-4842-5574-2. 



 

97 

[37] “Software Architecture — oneAPI Specification 1.1-rev-1 documentation.” 

https://spec.oneapi.io/versions/latest/architecture.html (accessed Jan. 01, 

2022). 

[38] “Data Parallel C++ Language.” 

https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-

parallel-c-plus-plus.html#gs.l1tf7j (accessed Jan. 02, 2022). 

[39] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook, and X. 

Tian, “Unified Shared Memory,” Data Parallel C++, pp. 149–171, 2021, doi: 

10.1007/978-1-4842-5574-2_6. 

[40] J. Reinders, M. Voss, P. Reble, and R. Asenjo-Plaza, “C++ for Heterogeneous 

Programming:  oneAPI (DPC++ and oneTBB),” Nov. 2020, Accessed: Jan. 

01, 2022. [Online]. Available: https://riuma.uma.es/xmlui/handle/10630/20404 

[41] K. Mani Chandy and C. Kesselman, “Compositional C++: Compositional 

parallel programming,” Lecture Notes in Computer Science (including 

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), vol. 757 LNCS, pp. 124–144, 1992, doi: 10.1007/3-540-

57502-2_44. 

[42] W. Yong, Z. Yongfa, W. Scott, Y. Wang, X. Qing, and W. Chen, “Developing 

medical ultrasound imaging application across GPU, FPGA, and CPU using 

oneAPI,” ACM International Conference Proceeding Series, Apr. 2021, doi: 

10.1145/3456669.3456680. 

[43] “DPC++ — oneAPI Specification 1.1-provisional-rev-1 documentation.” 

https://spec.oneapi.io/versions/1.1-provisional-rev-

1/elements/dpcpp/source/index.html (accessed Jan. 02, 2022). 

[44] “oneDPL — oneAPI Specification 1.1-provisional-rev-1 documentation.” 

https://spec.oneapi.io/versions/1.1-provisional-rev-

1/elements/oneDPL/source/index.html (accessed Jan. 02, 2022). 

[45] N. Alqudami and S.-D. Kim, “Adaptive discrete cosine transform-based image 

compression method on a heterogeneous system platform using Open 

Computing Language,” https://doi.org/10.1117/1.JEI.23.6.061110, vol. 23, 

no. 6, p. 061110, Sep. 2014, doi: 10.1117/1.JEI.23.6.061110. 

[46] “An Introduction to Fractal Image Compression Literature Number: BPRA065 

Texas Instruments Europe,” 1997. 



 

98 

[47] A. Öztürk, “A Fast Fractal Image Compression Algorithm Based on a Simple 

Similarity Measure The Implementation of a Parallel Data Processing 

Platform on Linux based PC Clusters View project Augmented Reality with 

VR Glasses View project,” 2011. [Online]. Available: 

https://www.researchgate.net/publication/236658356 

[48] H. Cao and X. Q. Gu, “Implement research of fractal image encoding based on 

OpenMP parallelization model,” in 2011 International Conference on Electric 

Information and Control Engineering, ICEICE 2011 - Proceedings, 2011, pp. 

462–465. doi: 10.1109/ICEICE.2011.5777994. 

[49] H. Cao and X. J. Gu, “OpenMP parallelization of Jacquin fractal image 

encoding,” 2010 International Conference on E-Product E-Service and E-

Entertainment, ICEEE2010, 2010, doi: 10.1109/ICEEE.2010.5661366. 

[50] “OpenMP Parallelization of Jacquin Fractal Image Encoding | IEEE 

Conference Publication | IEEE Xplore.” 

https://ieeexplore.ieee.org/abstract/document/5661366?casa_token=vtjvFua5h

OMAAAAA:ML5XLUMbQNUxPuabE716tY-

QOQW70RfZqnMTppNUZ6fiNRxQLRVt-mv1KrumVR_HpHDNpO-p4A 

(accessed Dec. 30, 2021). 

[51] A. Wakatani, “Improvement of adaptive fractal image coding on GPUs,” 

Digest of Technical Papers - IEEE International Conference on Consumer 

Electronics, pp. 255–256, 2012, doi: 10.1109/ICCE.2012.6161854. 

[52] S. N. Khan and N. Akhtar, “Parallelization of Fractal Image Compression 

Over CUDA,” undefined, vol. 150 LNEE, pp. 375–382, 2013, doi: 

10.1007/978-1-4614-3363-7_42. 

[53] N. Alqudami and S.-D. Kim, “OpenCL-based optimization methods for 

utilizing forward DCT and quantization of image compression on a 

heterogeneous platform”, doi: 10.1007/s11554-015-0507-5. 

[54] D. J. Jackson, H. Ren, X. Wu, and K. G. Ricks, “A hardware architecture for 

real-time image compression using a searchless fractal image coding method,” 

Journal of Real-Time Image Processing, vol. 1, no. 3, pp. 225–237, Apr. 2007, 

doi: 10.1007/S11554-007-0024-2/TABLES/3. 

[55] D. Vidya, R. Parthasarathy, T. C. Bina, and N. G. Swaroopa, “Architecture for 

fractal image compression,” Journal of Systems Architecture, vol. 46, no. 14, 

pp. 1275–1291, Dec. 2000, doi: 10.1016/S1383-7621(00)00018-7. 



 

99 

[56] S. Sharma, V. Chaurasia, and M. K. Gupta, “Review of Hardware on Fractal 

Image Compression”. 

[57] D. Vidya, R. Parthasarathy, T. C. Bina, and N. G. Swaroopa, “Architecture for 

fractal image compression,” Journal of Systems Architecture, vol. 46, no. 14, 

pp. 1275–1291, Dec. 2000, doi: 10.1016/S1383-7621(00)00018-7. 

[58] K. Belloulata and J. Konrad, “Fractal image compression with region-based 

functionality,” IEEE Transactions on Image Processing, vol. 11, no. 4, pp. 

351–362, Apr. 2002, doi: 10.1109/TIP.2002.999669. 

[59] “EBSCOhost | 71826711 | Fast Search Strategies for Fractal Image 

Compression.” 

https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&

authtype=crawler&jrnl=10162364&AN=71826711&h=R%2f%2bT86C6Ke1y

bopVamp3pdvXN1FrIR6dy8IRjv9KCRc%2bhQwKaVLA0kqqRqQV%2b0L

7cgfx6uOC1h174dUXDKbTQA%3d%3d&crl=c&resultNs=AdminWebAuth

&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26pr

ofile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d101623

64%26AN%3d71826711 (accessed Jan. 01, 2022). 

[60] R. Gupta, D. Mehrotra, and R. K. Tyagi, “Computational complexity of fractal 

image compression algorithm,” IET Image Processing, vol. 14, no. 17, pp. 

4425–4434, Dec. 2020, doi: 10.1049/IET-IPR.2019.0489/CITE/REFWORKS. 

[61] O. A. S. Alkishriwo, “Image compression using adaptive multiresolution 

image decomposition algorithm,” IET Image Processing, vol. 14, no. 14, pp. 

3572–3578, Dec. 2020, doi: 10.1049/IET-IPR.2019.1699. 

[62] W. Xing-Yuan, Z. Dou-Dou, and W. Na, “Fractal image coding algorithm 

using particle swarm optimisation and hybrid quadtree partition scheme,” IET 

Image Processing, vol. 9, no. 2, pp. 153–161, Feb. 2015, doi: 10.1049/IET-

IPR.2014.0001. 

[63] D. Chen and D. Singh, “Fractal video compression in OpenCL: An evaluation 

of CPUs, GPUs, and FPGAs as acceleration platforms,” Proceedings of the 

Asia and South Pacific Design Automation Conference, ASP-DAC, pp. 297–

304, 2013, doi: 10.1109/ASPDAC.2013.6509612. 

[64] “(PDF) FRACTALS IMAGE RENDERING AND COMPRESSION USING 

GPUS.” 

https://www.researchgate.net/publication/230772743_FRACTALS_IMAGE_



 

100 

RENDERING_AND_COMPRESSION_USING_GPUS (accessed Dec. 31, 

2021). 

[65] A. al Sideiri, N. Alzeidi, M. al Hammoshi, M. S. Chauhan, and G. AlFarsi, 

“CUDA implementation of fractal image compression,” Journal of Real-Time 

Image Processing, vol. 17, no. 5, pp. 1375–1387, Oct. 2020, doi: 

10.1007/s11554-019-00894-7. 

[66] S. Padmavati and V. Meshram, “FPGA Implementation for Fractal Quadtree 

Image Compression,” International Journal of Computer Sciences and 

Engineering, vol. 6, no. 10, pp. 405–409, Oct. 2018, doi: 

10.26438/IJCSE/V6I10.405409. 

[67] F. Ancarani, A. de Gloria, M. Olivieri, and C. Stazzone, “Design of an ASIC 

architecture for high speed fractal image compression,” Proceedings of the 

Annual IEEE International ASIC Conference and Exhibit, pp. 223–226, 1996, 

doi: 10.1109/ASIC.1996.551998. 

[68] K. P. Acken, M. J. Irwin, and R. M. Owens, “A Parallel ASIC Architecture for 

Efficient Fractal Image Coding,” Journal of VLSI signal processing systems 

for signal, image and video technology 1998 19:2, vol. 19, no. 2, pp. 97–113, 

Jul. 1998, doi: 10.1023/A:1008005616596. 

[69] A. Wakatani, “Preliminary implementation of two parallel programs for fractal 

image coding on GPUs,” Digest of Technical Papers - IEEE International 

Conference on Consumer Electronics, pp. 333–334, 2011, doi: 

10.1109/ICCE.2011.5722612. 

[70] D. Chen and D. Singh, “Fractal Video Compression in OpenCL,” 2013. 

[71] W. D. Marsland, “Use of digital computers in basic mathematics courses,” 

AFIPS Conference Proceedings - 1965 Fall Joint Computer Conference - 

Computers: Their Impact on Society, AFIPS 1965, pp. 111–114, Nov. 1965, 

doi: 10.1145/1464013.1464032. 

[72] C. Engelman, “MATHLAB: A program for on-line machine assistance in 

symbolic computations*,” Proceedings of the November 30--December 1, 

1965, fall joint computer conference, part II: computers: their impact on 

society on XX - AFIPS ’65 (Fall, part II), doi: 10.1145/1464013. 

[73] M. Costanzo, E. Rucci, C. G. Sanchez, and M. Naiouf, “Early Experiences 

Migrating CUDA codes to oneAPI,” May 2021, Accessed: Jan. 01, 2022. 

[Online]. Available: https://arxiv.org/abs/2105.13489v1 



 

101 

[74] “Optimize Your GPU Applications with the Intel® oneAPI Base Toolkit.” 

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-

optimization-workflow.html#gs.4leqww (accessed Jul. 02, 2022). 

[75] “Model Offloading to a GPU.” 

https://www.intel.com/content/www/us/en/develop/documentation/advisor-

user-guide/top/model-offloading-to-a-gpu.html (accessed Jul. 02, 2022). 

[76] “Pipes Extension.” 

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-

fpga-optimization-guide/top/flags-attr-prag-ext/kernel-controls/pipes-

extension.html (accessed Jul. 02, 2022). 

[77] “Kernel Variables.” 

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-

fpga-optimization-guide/top/flags-attr-prag-ext/kernel-variables.html 

(accessed Jul. 02, 2022). 

[78] “Emulator Environment Variables.” 

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-

programming-guide/top/programming-interface/fpga-flow/emulate-your-

design/emulator-environment-variables.html#emulator-environment-variables 

(accessed Jul. 02, 2022). 

[79] “Cygwin.” https://www.cygwin.com/ (accessed Jul. 02, 2022). 

[80] “Fix Performance Bottlenecks with Intel® VTuneTM Profiler.” 

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-

profiler.html#gs.4msclv (accessed Jul. 02, 2022). 

[81] “Analysis System Options.” 

https://www.intel.com/content/www/us/en/develop/documentation/vtune-

help/top/set-up-project/analysis-system/analysis-system-options.html 

(accessed Jul. 02, 2022). 

[82] “Set Up Analysis Target.” 

https://www.intel.com/content/www/us/en/develop/documentation/vtune-

help/top/set-up-analysis-target.html (accessed Jul. 02, 2022). 

[83] “The stdlib Chrono Library”. 

[84] S. Kwon, J. Byun, and H. W. Park, “Elimination of Race Condition During 

GPU Acceleration of Probabilistic Height Map,” Lecture Notes in Networks 



 

102 

and Systems, vol. 429 LNNS, pp. 313–322, 2022, doi: 10.1007/978-3-030-

97672-9_28. 

[85] “Intel® oneAPI Base Toolkit - Intel Communities.” 

https://community.intel.com/t5/Intel-oneAPI-Base-Toolkit/bd-p/oneapi-base-

toolkit (accessed Jul. 03, 2022). 

[86] “Limitations of the Emulator.” 

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-

programming-guide/top/programming-interface/fpga-flow/emulate-your-

design/limitations-of-the-emulator.html (accessed Jul. 03, 2022). 

[87] “Discrepancies in Hardware and Emulator Results.” 

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-

programming-guide/top/programming-interface/fpga-flow/emulate-your-

design/discrepancies-in-hardware-and-emulator-results.html (accessed Jul. 03, 

2022). 

[88] “IPC.” 

https://www.intel.com/content/www/us/en/develop/documentation/vtune-

help/top/reference/cpu-metrics-reference/ipc.html (accessed Jul. 03, 2022). 

[89] “Memory Bound.” 

https://www.intel.com/content/www/us/en/develop/documentation/vtune-

help/top/reference/cpu-metrics-reference/memory-bound.html (accessed Jul. 

03, 2022). 

[90] “Microarchitecture Exploration Analysis.” 

https://www.intel.com/content/www/us/en/develop/documentation/vtune-

help/top/analyze-performance/microarchitecture-analysis-group/general-

exploration-analysis.html (accessed Jul. 03, 2022). 

[91] “Microarchitecture Usage.” 

https://www.intel.com/content/www/us/en/develop/documentation/vtune-

help/top/reference/cpu-metrics-reference/microarchitecture-usage.html 

(accessed Jul. 03, 2022). 

[92] K. O’leary, “Intel® VTune Profiler and Intel® Advisor Overview”. 

[93] “CPU Metrics.” 

https://www.intel.com/content/www/us/en/develop/documentation/vtune-

help/top/reference/cpu-metrics-reference.html (accessed Jul. 03, 2022). 



 

103 

[94] “Summary - Hotspots by CPU Usage.” 

https://www.intel.com/content/www/us/en/develop/documentation/vtune-

help/top/reference/user-interface-reference/window-summary/window-

summary-hotspots-by-cpu-usage.html#window-summary-hotspots-by-cpu-

usage_CPU_USAGE (accessed Jul. 03, 2022). 

 


	Template Tesis UTM v2.0
	ed4cb55702c5774ffd20b06ae299b04d82440d1db7fabec6676052801ba17746.pdf
	Template Tesis UTM v2.0
	30888d91239f3c06ae1f8593fda9013c4705c69bc497c77242d98fce823993b1.pdf
	Template Tesis UTM v2.0
	554514adbd1e425020277a49abde4ed7248f0d0067060c69678c562d66cefd2a.pdf
	Template Tesis UTM v2.0



