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ABSTRACT 

Images are stored and processed on computers as collections of bits 

representing pixels or points forming the picture elements. Fractal Image Compression 

(FIC) is based on the search for self-similarity in the image, and it can provide a high 

compression rate to minimize the usage of memory. However, FIC Algorithm 

techniques take a long time to encode an image. It requires performing an enormous 

number of matching operations. To speed up the process, multiple improvements in 

terms of hardware and software have been done. This paper proposes another approach 

to support flexibility and portability for FIC implementation. Nowadays, there are 

diverse methods of fractal image compression. Most of the methods establish a 

commitment between fast coding, image quality, and compression rate. Nevertheless, 

these methods are difficult to be implemented due to several limitations. Thus, we will 

develop and implement FIC Algorithm on CPU, GPU, and FPGA based on a single 

source code.  In this work, the implementation of the FIC Algorithm on XPU is using 

oneAPI™ base toolkit and its library. Furthermore, the framework was developed 

using the Data-Parallel C++ programming language (DPC++) and executed on diverse 

heterogeneous hardware architectures such as CPU, GPU, and FPGA. This approach 

achieves 52 times execution time speed-up between CPU and GPU implementation 

and significant improvement between targeted XPU architecture. 
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ABSTRAK 

Imej disimpan dan diproses pada komputer sebagai koleksi bit yang mewakili 

piksel atau titik yang membentuk elemen gambar. Pemampatan Imej Fraktal (PIF) 

adalah berdasarkan pencarian persamaan diri dalam imej, dan ia boleh memberikan 

kadar mampatan yang tinggi untuk meminimumkan penggunaan memori. Walau 

bagaimanapun, teknik Algoritma FIC mengambil masa yang lama untuk mengekod 

imej. Ia memerlukan melaksanakan sejumlah besar operasi pemadanan. Untuk 

mempercepatkan proses, pelbagai penambahbaikan dari segi perkakasan dan perisian 

telah dilakukan. Kertas kerja ini mencadangkan pendekatan lain untuk menyokong 

fleksibiliti dan mudah alih untuk pelaksanaan PIF. Pada masa kini, terdapat pelbagai 

kaedah pemampatan imej fraktal. Kebanyakan kaedah mewujudkan komitmen antara 

pengekodan pantas, kualiti imej dan kadar mampatan. Namun begitu, kaedah ini sukar 

dilaksanakan kerana beberapa batasan. Oleh itu, kami akan membangunkan dan 

melaksanakan Algoritma Pemampatan Imej Fraktal pada CPU, GPU dan FPGA 

berdasarkan kod sumber tunggal. Dalam kerja ini, pelaksanaan Algoritma FIC pada 

XPU menggunakan kit alat asas oneAPI™ dan perpustakaannya. Tambahan pula, 

rangka kerja telah dibangunkan menggunakan bahasa pengaturcaraan Data-Parallel 

C++ (DPC++) dan dilaksanakan pada seni bina perkakasan heterogen yang pelbagai 

seperti CPU, GPU dan FPGA. Pendekatan ini mencapai 52 kali percepatan masa 

pelaksanaan antara pelaksanaan CPU dan GPU dan peningkatan ketara antara seni bina 

XPU yang disasarkan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Image compression is critical for storing and transmitting visual data, which is 

the foundation for video and other multimedia applications. Images size grows rapidly 

as image quality and resolution ratio improves. Thus, this issue becomes a bottleneck 

in real-world applications. The increase in image size necessitates more storage space 

and bandwidth for transmission. In image processing, the question of how to reduce 

image size has become a hot topic[1], [2]. 

Moreover, Image compression and encoding may be accomplished using a 

variety of traditional known methods and standards. Classic image compression and 

encoding methods include Huffman Coding[3], Discrete Cosine Transformation 

(DCT)[4], wavelet image coding[5], and so on. Examples of these methods are BIG, 

H.263, JPEG, and MPEG. To compress images, the above-mentioned traditional 

approaches investigate the connection between pixels to reduce spatial or spectral 

redundancy[6]. The compression ratio, on the other hand, has now reached the 

bottleneck. As a result, new visual information redundancy reduction methods are 

required to achieve larger compression ratios[7]. 

Thus, the Fractal Image Compression (FIC) was introduced to tackle the 

compression method improvement. FIC is based on self-similarity between small and 

large parts of the image. Because the method of FIC is just storing the quantization 

parameters of Contractive Affine Transformation (CAT), it can reach a higher 

compression ratio in this case[8]. Eventually, the FIC method has drawbacks due to its 

high computational time and high resources needed. Over the years, many 
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enhancements, and improvements in terms of Software and Hardware to tackle the 

drawback of FIC. Thus this, paper we will present another improvement in terms of 

portability of software and hardware of FIC algorithm implementation. 

1.2 Problem Statement 

Based on the problem background discussed in the previous section. In this 

section, we will discuss and list the problem statement of the research. Firstly, FIC is 

a complex and intensive algorithm this is because the computational burden increase 

as the image size increase. For example, the M x M size of the image, the time 

complexity of the FIC algorithm is approximately O(n4). Moreover, the FIC problem 

due to its computational burden increase. Although many methods proved to improve 

the coding time. However, the runtime performance is still very low even with a 

search-less approach.  

Moreover, in modern hardware design with the presence of the heterogeneous 

hardware architecture. Due to its complex and intensive algorithm, that results in the 

adoption of heterogeneous parallelism of diverse hardware architecture such as CPU, 

GPU, FPGA, and ASIC known as XPU. This led to a surging interest in the 

exploitation of multiple hardware architectures instead of the CPU. Fourth is because 

of current development work of FIC improvement is bound to specific Architecture. 

For example, developers had to rely on either proprietary architecture-specific 

solutions like CUDA that only allow using NVIDIA hardware or low-level cross-

architecture solution that complicate development like OpenCL. 

Lastly, over the years, many adoptions of FIC algorithms across a diverse 

architecture but the developer still have the limitation of implementing this because of 

the lack of software framework, portability, and availability. The limitation of the 

common software stack for programming diverse hardware architecture causes 

developers had to use vendor-specific programming platforms and Application 
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Programming Interface (API) that gating the improvement of FIC computation across 

diverse hardware architectures.  

1.3 Research Objectives 

The research objective for this project is: 

I. To implement Fractal Image Compression Algorithm using oneAPI™ 

approach.  

II. To design the oneAPI™ Data-Parallel C++ framework for Fractal 

Image Compression Algorithm across XPU architecture.  

III. To explore the portability of oneAPI™ framework toward multiple 

XPU architectures.  

1.4 Research Scopes 

The research scope for this project is: 

I. This project will implement and use the conventional Fractal Image 

Compression (FIC) Algorithm. 

II. Only chosen loop available in the FIC algorithm will be implemented 

using Intel® oneAPI™ Data-parallel C++ (DPC++) direct 

programming function and Intel® oneAPI™ oneTBB library with 

Unified Shared Memory (USM) allocation strategy. 

III. In terms of software and API, the code will be written in Intel® 

oneAPI™ Data-parallel C++ and using a build-in Intel® oneAPI™ 

Base toolkit and library on the Microsoft Visual Studio platform and 

Intel® DevCloud™ platform.  

IV. The code will execute and test on hardware such as Intel® Core™ & 

Xeon™ CPU, Intel® iRIS® Xe™ MAX & Xeon™ Gold integrated 

GPU, and Intel® STRATiX™ 10 FPGA Emulation Platform.  
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V. Performance indicators will be discussed in terms of kernel 

computational runtime, Peak signal-to-noise ratio (PSNR), 

Compression rate, and Analysis from the Intel VTune profiler.  

1.5 Thesis Outline 

This thesis consists of five chapters. Chapter 1 discusses the research 

introduction, problem statement, objectives, and scope of this project. The main focus 

of this project is to implement the FIC Algorithm on XPU using the oneAPI approach.  

Chapter 2, will be discussed the theory of FIC, drawbacks of the Algorithm, 

oneAPI programming model and toolkit, Data-parallel C++ (DPC++), and the related 

work based on software and hardware approach. Moreover, also point out the research 

gap in this chapter.  

In Chapter 3, the techniques and methodology throughout the project are 

discussed. The method of coding the FIC algorithm using DPC++ will be discussed in 

detail. Moreover, the implementation of the oneAPI base toolkit is also discussed in 

Chapter 3. Lastly, the benchmarking of technique and implementation of the oneAPI 

approach is also will be discussed in detail.  

All results and discussion for this project will be presented in the next chapter, 

Chapter 4. The faced problem and gating solution to overcome the problems will be 

discussed in this chapter. The novelty of the results and findings will be mentioned in 

this chapter as well. Lastly, Chapter 5 will brief on the expected outcome of this project 

within the time allocated.  
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