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ABSTRACT 

Spent bleaching earth (SBE) is classified as an industrial waste generated by 

almost all crude palm oil refineries around the globe. SBE contains oil content in the 

range of 20-40% by weight, which is being extracted out by a solvent extraction 

process plant to cater for biodiesel production. Most of the current studies are focusing 

on the optimization of various plants and seeds extraction parameters based on a 

laboratory scale. Hence, a study on the optimization of the solvent extraction 

parameters conducted on an actual industrial-scale production plant is the key element 

for an enhanced SBE oil extraction process plant management. This study shall pioneer 

in optimizing the extraction parameters to enable plant managers to monitor the inputs 

and outputs of each plant equipment to operate the plant efficiently. In this study, the 

extraction parameters, namely, settling rate, n-hexane temperature, and slurry 

concentration were optimized by response surface methodology using Box-Behnken 

Design (BBD) to improve the extraction oil rate. The independent variables, settling 

rate (13 ml, 11 ml, and 8 ml), n-hexane temperature (45 °C, 50 °C and 55 °C), and 

slurry concentration (30%, 35%, and 40%) were selected for optimization at three-

factorial levels and their values were selected based on the extraction plant current 

operating condition and limitation. The BBD consisted of 17 experimental actual 

production plant runs with 3 hours of continuous process control with a steady-state 

operation for each run. A second-order polynomial model was used for predicting the 

responses’ outcomes. Analysis of variance of the conducted experimental runs 

concluded that 96.9% of the variation was explained by the models. The optimized 

extraction parameters were 13 ml, 55 °C, and 30%, for settling rate, n-hexane 

temperature, and slurry concentration, respectively. Under the optimized extraction 

parameters, the values of the corresponding response was 2.080 tons per hour.  Mass 

balance computation, which was conducted with the aid of SuperPro Designer® 

software, resulted an improved extraction oil rate of 2.086 tons per hour which was an 

improvement of 9% as a result of the optimization conducted the studied production 

plant. 
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ABSTRAK 

Tanah peluntur terpakai (SBE) diklasifikasikan sebagai sisa industri yang 

dijanakan oleh hampir semua penapisan minyak sawit mentah di seluruh dunia. SBE 

mengandungi kandungan minyak dalam julat 20-40% mengikut berat, yang disarikan 

oleh loji proses penyarian pelarut untuk menampung pengeluaran biodiesel. 

Kebanyakan kajian terkini tertumpu kepada pengoptimuman parameter proses 

penyarian pelbagai tumbuhan dan bijian berdasarkan skala makmal. Oleh itu, suatu 

kajian tentang pengoptimuman parameter penyarian pelarut yang dilakukan dalam 

suatu loji pengeluaran yang berskala industri adalah sangat penting supaya pengurusan 

loji proses penyarian minyak SBE dapat dilakukan dengan lebih baik. Kajian ini akan 

menjadi perintis dalam mengoptimumkan parameter penyarian supaya pengurus loji 

dapat memantau masukan dan keluaran setiap peralatan loji untuk mengendalikan loji 

dengan lebih cekap. Dalam kajian ini, parameter penyarian, iaitu, kadar pengenapan, 

suhu n-heksana, dan kepekatan buburan dioptimumkan oleh kaedah sambutan 

permukaan dengan menggunakan rekabentuk Box-Behnken Design (BBD) untuk 

mempertingkatkan kadar penyarian minyak. Pembolehubah tidak bersandar, iaitu 

kadar pengenapan  (13 ml, 11 ml  dan 8 ml), suhu n-heksana (45 °C, 50 °C dan  55 °C) 

dan kepekatan buburan (30%, 35%, dan 40%) telah dipilih untuk pengoptimuman di 

tahap tiga-faktoran dan nilai-nilai tersebut dipilih berdasarkan keadaan semasa dan had 

operasi loji penyarian. BBD terdiri daripada 17 eksperimen di loji pengeluaran sebenar 

yang dijalankan dengan 3 jam kawalan proses berterusan dengan operasi yang stabil 

bagi setiap eksperimen. Model polinomial tertib kedua telah digunakan untuk meramal 

hasil jawapan. Analisa varians untuk eksperimen yang dijalankan menyimpulkan 

bahawa 96.9% daripada variasi telah dijelaskan oleh model. Parameter penyarian yang 

dioptimumkan masing-masing adalah 13 ml, 55 °C, dan 30%, untuk kadar 

pengendapan, suhu n-heksana, dan kepekatan buburan. Berdasarkan parameter 

penyarian yang dioptimumkan, nilai yang diperoleh adalah 2.080 tan per jam kadar 

penyarian minyak.  Selanjutnya, pengiraan kesimbangan jisim yang dikira dengan 

menggunakan perisian SuperPro Designer® menghasilkan kadar penyarian minyak 

sejumlah 2.086 tan per jam, iaitu peningkatan sejumlah 9% hasil daripada 

pengoptimuman yang telah dilakukan di loji pengeluaran yang dikaji. 
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INTRODUCTION 

1.1 Background of Study 

Today’s globalized and competitive market demands not only to force a 

manufacturing plant management to react reactively on accommodating the challenges 

but also to formulate a concrete result-driven action plan to achieve excellence in their 

business [1]. The palm oil industry, like any other manufacturing industries, is 

constantly experiencing the growing demand from consumers from all over the world. 

In 2019, the oil palm planted area increased to 5.90 million hectares, an increase of 

0.9% as against 5.85 million hectares in the previous year [2]. CPO production 

increased marginally by 1.8%, to 19.86 million tonnes as against 19.52 million tonnes 

recorded in 2018. The increase was due to higher FFB processed, up by 0.5 % arising 

from higher FFB yield which increased by 0.2%. Total Malaysian exports of oil palm 

products in 2019 was recorded at 27.88 million tonnes, higher by 12.1% from 24.88 

million tonnes exported in 2018 [2]. 

India maintained its position as the largest Malaysian palm oil export market 

for the sixth consecutive year since 2014, with the intake in 2019 at 4.41 million tonnes 

or 23.9% of total Malaysian palm oil exports. Secondly was China at 2.49 million 

tonnes or 13.5%, the EU 2.09 million tonnes or 11.3%, Pakistan 1.09 million tonnes 

or 5.9%, Turkey 0.71 million tonnes or 3.8%, the Philippines 0.63 million tonnes or 

3.4% and Vietnam 0.60 million tonnes or 3.2%. These top seven markets accounted 

for 12.01 million tonnes or 65.0% of total Malaysian palm oil exports in 2019 [2]. 
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The crude palm oil (CPO) produced by the plantation’s upstream division is 

primarily supplied to the palm oil refinery, whereby the CPO is processed into refined, 

bleached and deodorized palm oil (RBDPO). In 2019, 16.39 million tonnes of RBDPO 

was produced to be either exported or further fractionated into palm olein and palm 

stearine [2].  Malaysian palm refinery consists of two types of refining method, 

namely, physical and chemical refining. Given lower processing cost, minimal oil loss 

and less volume of wastewater for further treatment, physical refining is preferred. 

Physical refining consists of two main sections, bleaching and deodorizing. Bleaching 

section functions as impurities removal by the bleaching earth, which is a strong acid-

activated adsorbent. Impurities such as chlorophyll, heavy metals, chlorides, and 

phosphatides are adsorbed by the bleaching earth when the CPO is vigorously mixed 

under 20-50 mbar vacuum condition for 45 minutes [3]. Deodorizing is mainly carried 

out by utilizing sparing steam to remove the odour, free fatty acid and colour pigments. 

In ensuring low colour and odourless RBDPO, the bleaching section must be operated 

within its optimal conditions or risk producing darkened refined oils [4]. 

The bleaching earth is dosed in the range of 9 – 15 kg per tonne CPO in the 

bleaching vessel via a hopper and pneumatic system [5]. Based on the 2019 Malaysian 

Palm Oil Board (MPOB) statistic on the volume of RBDPO produced, with an average 

of 12 kg of bleaching earth consumed for each tonne of CPO, refineries in Malaysia 

consumed an estimated 210,000 tonnes of bleaching earth in 2019. After the bleaching 

process, the bleaching earth is considered industrial waste and known as spent 

bleaching earth (SBE), which contains 18-40% of oil by weight [6]. 

Recently, a serious concern is rising among environmentalists and common 

people on environmental pollution which may arise from the inappropriate disposal of 

the SBE. The remnant oil from the SBE might cause a leachate issue when a large 

amount of SBE is exposed to rainfall at the landfill disposal area [7]. Those leachates 

may heavily pollute rivers which lead to alarming issues for residency water treatment 

plant and direct life-threatening impact to the various macro and microorganism [8]. 
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Hence, solvent extraction was found to be the most efficient process to recover 

the oil residue in SBE [9]. Higher yield and better quality of oil are the main 

justification for niche industry players to build a solvent extraction plant to extract the 

oil contains in the SBE [10]. The extracted oil from SBE is widely consumed by 

biodiesel production plants around the world as one of the primary raw material. 

Besides gaining on the economical aspect, the de-oiled SBE is further decomposed by 

burning it in a customized fluidized-bed combustion steam boiler to generate steam 

for the plant [11]. The ashes as the product of the combustion are sold to cement 

factories to be blended in a particular ratio with the cement to enhance the strength and 

function as an activator [12]. 

Biodiesel is an alternative fuel in place of conventional fuels due to a reduction 

in fuel reserves and rising environmental issues. Nowadays, several countries have 

encouraged the use of alternative fuel like biodiesel fuel utilizing governmental 

initiatives and mandate. Palm oil is certainly a good source of energy for the production 

of biodiesel with the oil extracted from SBE shall be a reliable and suitable ingredient 

for a palm oil-based biodiesel plant [13]. 

Almost all the solvent extraction plant is consuming n-hexane as the solvent to 

extract out the adsorbed oil content in the SBE. In spite that n-hexane is relatively 

expensive, hence, it requires an optimized process control for improved recovery of 

extracted oil to ensure the production cost of the solvent extraction plant is well-

controlled based on the budgetary figures. 

However, n-hexane consumption is not the only extraction parameter that 

contributes to the optimization of the extracted oil production. Various independent 

variables that significantly contribute to the production rate needs to be studied to 

operate the plant most efficiently. A solvent extraction plant that shares similar crucial 

necessity as other manufacturing industries in boosting up the production volume on 

daily basis, is in the desire needs in improving the plant’s efficiency to ensure the 

production rate is maintained at an optimum level.  
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The need to reduce the cost of operations and the increase in global competition 

amid tough economic climates, particularly during and post the COVID-19 

pandemic’s adverse effects, are the ultimate drivers for most of the manufacturing 

business owners to eliminate non-value adding operations, reinvent the process control 

and increase production volume and yield. Hence, business owners who enduring 

themselves in the fierce and stiff competition are zooming into operational excellence 

to enable them to stand firm on their profit ground with broader market capitalization. 

By definition, operational excellence is the state of any business organization that the 

organization achieves through the development of technology and innovation in the 

service and product development as well as their distributions [14].   

Operational excellence becomes a major concern for the manufacturing sector 

around the world to improve product yield, increasing production rate, and reducing 

production costs. While operational excellence predominantly deals with production 

process optimization, market and customer orientation, and production efficiency, 

process plant managements around the globe have geared up with the enormous 

amount of effort and resources to ensure their respective manufacturing plants can 

sustain and compete efficiently in their respective business field [15]. 

In many typical production process plants, the production rate of a desired plant 

and machinery is generally assumed to be inflexible and predetermined [16].  An 

optimized production rate shall translate into an economic scale, mainly on improving 

the business profitability and lowering unit costs [17]. Concerning the optimized 

production rate, other essential operations, and business key elements such as capital 

costs, operating costs, size of processing plant and infrastructure are eventually a 

function of production rate [18]. 

To optimize the production rate, an optimization activity has to be conducted 

on the critical parameters which contribute significantly to the daily production rate 

and yield. The extraction production plant studied contains a set of extraction 

parameters that need to be optimized to improve the production rate and yield of the 

SBE oil. Those parameters need to be manipulated according to a workable range that 

suits the production plant’s equipment capability and limitation. 
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Optimization needs to be carried out by utilizing computational software that 

is available in the market such as Design Expert, Aspen HYSYS and MATLAB. Any 

of that software can conclude the most optimized parameters which produce an 

improved production rate based on the actual experimental runs outcomes [19]. A mass 

balance computation for the whole optimization process control shall provide a quick 

check-and-balance for the plant process engineers to forecast the production rate and 

based on the optimized parameters.  

 

1.2 Problem Statement 

The solvent extraction plant studied in this research work has a great potential 

for an improvement of the extracted oil rate. However, the extraction parameters, 

which are in place and inherited from the previous generation of engineers and plant 

managers, have not been optimized to improve the production rate. Currently, the 

optimized average SBE oil extraction achieved for the studied production plant is 1.90 

tons per hour.  

 Being the plant manager and engineer of the studied extraction plant, there is 

very limited research reference that they can be referred to in optimizing the extraction 

parameters. Most of the studies were conducted mainly on extraction optimization of 

various parameters of plants and seeds. Those studies were done on a lab-scale 

approach rather than on industrial plants. Besides, none of the studies was done on the 

optimization of SBE extraction parameters on an industrial scale to improve the 

extracted oil production rate. 

Besides optimizing the parameters, the establishment of mass balance for the 

whole extraction process is considered the desired step to ensure quality control done 

on various parameters is reflected in the actual operations of the plant. Besides, the 

mass balance shall help engineers to monitor closely the efficiency of each piece of 

equipment involved in the extraction plant. On the other hand, a check and balance on 

the process control shall be well-established with the aid of mass balance.  
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Subsequently, any losses on extracted oil production at any process flow stages 

shall be promptly detected. To date, no study was done on mass balance for a SBE 

extraction plant. Therefore, a detailed and comprehensive study on optimization of 

SBE oil extraction parameters to improve the extracted oil production rate shall be a 

novelty study to assist extraction plant management to manage and operate their 

respective plant in a most efficient manner. 

 

1.3 Objective 

The objective of this study is to optimize the extraction parameters to improve 

the SBE oil extraction rate in the studied extraction production plant. 

 

1.4 Scopes of Study 

To achieve the objectives, the following scopes have been identified in this 

research, which is: - 

1. Identification of extraction parameters (settling rate, solvent temperature and 

slurry concentration) that need to be optimized to improve the SBE oil 

extraction rate. 

2. Optimization of extraction parameters (settling rate, solvent temperature and 

slurry concentration) using Response Surface Methodology and Design Expert 

Version 12.0 software to improve the SBE oil extraction rate. 

3. Development of mass balance for the entire process flow of the SBE oil 

extraction plant using SuperPro Designer® Version 10.3. 
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1.5 Significant of Study 

This research study shall contribute significantly to both engineering and 

science in assisting SBE extractor plant manufacturers, owners, management, and 

engineers on solutions to improve the SBE oil extraction rate from SBE.  The 

improvement in the SBE oil extraction rate may increase product sales revenue and 

assist the plant owner in positive cash flows. Nevertheless, from the environmental-

friendly point of view, the improvement in the oil extraction rate shall prevent any 

potential harm arising from the remnant of oil residue from the SBE. 
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