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ABSTRACT 

Sinensetin, isosinensetin and rosmarinic acid are potent bioactive compounds 

for human health benefits that can be extracted from Orthosiphon stamineus (O. 

stamineus) leaves. Supercritical carbon dioxide (SC-CO2) extraction which has 

emerged as the preferable green solvent for natural products has been employed in the 

present study. The most important factor for designing SC-CO2 extraction process is 

to obtain the solubility data. The solubility of extract yield in SC-CO2 extraction has 

been widely reported, however, the extract yield consists of a mixture of interacting 

solutes which could affect the solubility. Thus, the solubility data of the solutes from 

O. stamineus leaves were determined in this study. The chemical parameters of 

temperature and pressure in the range of 40 - 80 °C and 10 - 30 MPa, respectively were 

investigated. Meanwhile, insignificant mechanical parameters of mean particle size 

(400 µm), total flow rate (5 mL/min), ethanol (5% v/v) and extraction time (4 hours) 

were kept constant. The concentration of solutes increased as temperature increased 

while the dual effect of pressure was observed. The solute vapor pressure prevailed 

over solvent power. The optimum SC-CO2 condition was obtained at 10 MPa and 80 

°C with a high concentration of sinensetin, isosinensetin and rosmarinic acid of 440.3, 

392.9 and 752.0 mg/kg sample, respectively by using response surface methodology 

with central composite design. Due to interaction of solutes, the solubility of 

sinensetin, isosinensetin and rosmarinic acid were varied from 0.617 - 17.179, 0.446 - 

10.119 and 0.066 - 8.729 mg/kg solvent, respectively. Investigation on the effect of 

chemical parameters on the solute’s solubility showed similar behaviour as the solute’s 

concentration. However, rosmarinic acid with the highest concentration has the lowest 

solubility in SC-CO2. The presence of hydrogen bond acceptor and donor sites on the 

rosmarinic acid’s structure causes strong solute-solute interaction which contributes to 

the shortest intermolecular distance of 1.669 Å. On the other hand, the solubility of 

sinensetin was significantly higher than its isomer (isosinensetin) due to difference in 

melting point and dipole moment. Sinensetin has a lower melting point and dipole 

moment of 452.15 K and 3.36 D, respectively compared to isosinensetin with 479.15 

K and 4.9 D. Thus, isosinensetin has stronger interaction between its molecules with 

the intermolecular distance of 2.395 Å compared to sinensetin with 2.454 Å. Then, the 

solubility data were correlated using two semi-empirical models namely Chrastil and 

del Valle-Aguilera. The obtained results revealed that both models were successfully 

correlated the experimental solubility data with low value of average absolute relative 

deviation percent in the range of 3.04% to 5.24%. Sinensetin (0.337) has the lowest 

value of coefficient of interaction, 𝑘 followed by isosinensetin (0.676) and rosmarinic 

acid (1.012). These values indicates that sinensetin has the weakest solute-solute 

interaction but strong solute-solvent interaction which led to highest solubility in SC-

CO2. Negative value of 𝑘 was obtained due to negative effect of pressure on the solute 

solubility. Besides, the enthalpy of vaporization and solvation of solutes were obtained 

from the correlation models which vary from 4.19 to 13.38 kJ/mol and -1.59 to -0.41 

kJ/mol, respectively. Hence, the present study has provided various data on sinensetin, 

isosinensetin and rosmarinic acid extracted from O. stamineus leaves in SC-CO2 which 

can be applied for further research.  
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ABSTRAK 

Sinensetin, isosinensetin dan asid rosmarinik adalah sebatian bioaktif yang penting 

untuk manfaat kesihatan manusia yang dapat diekstrak dari daun Orthosiphon stamineus 

(O. stamineus). Bendalir lampau genting karbon dioksida (SC-CO2) yang telah muncul 

sebagai pelarut hijau yang paling disukai untuk produk semula jadi telah digunakan dalam 

kajian ini. Faktor yang paling penting untuk mereka bentuk proses pengekstrakan SC-CO2 

adalah mendapatkan data kebolehlarutan. Kebolehlarutan hasil ekstrak dalam 

pengekstrakan SC-CO2 telah dilaporkan secara meluas, namun hasil ekstrak terdiri 

daripada campuran bahan larut berinteraksi yang dapat mempengaruhi kebolehlarutan. 

Oleh itu, data kebolehlarutan bahan larut dari daun O. stamineus ditemukan dalam kajian 

ini. Parameter kimia iaitu suhu dan tekanan masing-masing dalam julat 40 - 80 °C dan 10 

- 30 MPa, telah diselidiki. Sementara itu, parameter mekanikal yang tidak ketara dari 

purata ukuran zarah (400 µm), jumlah kadar alir (5 mL/min), etanol (5% v/v) dan masa 

pengekstrakan (4 jam) dijadikan malar. Kepekatan bahan larut meningkat apabila suhu 

meningkat sementara kesan berganda bagi tekanan telah ditunjukkan. Tekanan wap bahan 

larut mengatasi kuasa pelarut. Keadaan optimum SC-CO2 telah diperoleh pada 10 MPa 

dan 80 °C dengan kepekatan yang tinggi bagi sinensetin, isosinensetin dan asid rosmarinik 

sekitar 440.3, 392.9 dan 752.0 mg/kg sampel, masing-masing dengan menggunakan 

kaedah sambutan permukaan dengan reka bentuk komposit berpusat. Kerana interaksi 

bahan larut, kebolehlarutan sinensetin, isosinensetin dan asid rosmarinik masing-masing 

berbeza dari 0.617 - 17.179, 0.446 - 10.119 dan 0.066 - 8.729 mg/kg pelarut. Kesan 

parameter kimia terhadap kebolehlarutan bahan larut menunjukkan tingkah balas yang 

sama dengan kepekatan bahan larut. Walau bagaimanapun, asid rosmarinik dengan 

kepekatan tertinggi mempunyai kebolehlarutan terendah dalam SC-CO2. Kehadiran 

bahagian penerima dan penderma ikatan hidrogen pada struktur asid rosmarinik 

menyebabkan interaksi bahan larut menjadi kuat serta menyumbang kepada jarak antara 

molekul yang terdekat iaitu 1.669 Å. Sebaliknya, kebolehlarutan sinensetin jauh lebih 

tinggi daripada isomernya (isosinensetin) kerana perbezaan pada takat lebur dan momen 

dwikutub. Sinensetin mempunyai takat lebur dan momen dwikutub yang lebih rendah 

masing-masing pada 452.15 K dan 3.36 D, berbanding dengan isosinensetin pada 479.15 

K dan 4.9 D. Oleh itu, isosinensetin mempunyai interaksi yang lebih kuat antara 

molekulnya dengan jarak antara molekulnya pada nilai 2.395 Å berbanding dengan 

sinensetin pada 2.454 Å. Kemudian, data kebolehlarutan dihubungkan dengan 

menggunakan dua model separa empirikal iaitu Chrastil dan del Valle-Aguilera. Hasil 

yang diperoleh menunjukkan bahawa kedua-dua model berjaya mengaitkan dengan data 

kebolehlarutan eksperimen dengan purata sisihan relatif mutlak yang rendah dalam julat 

3.04% hingga 5.24%. Sinensetin (0.337) mempunyai pekali interaksi, 𝑘 terendah diikuti 

oleh isosinensetin (0.676) dan asid rosmarinik (1.012). Nilai-nilai ini menunjukkan 

bahawa sinensetin mempunyai interaksi bahan larut paling lemah tetapi interaksi bahan 

larut-pelarut sangat kuat sehingga menyebabkan kebolehlarutan sinensetin tertinggi dalam 

SC-CO2. Nilai negatif bagi 𝑘 diperolehi kerana pengaruh tekanan negatif terhadap 

kebolehlarutan bahan larut. Selain itu, entalpi pengewapan dan pensolvatan bahan larut 

diperoleh dari model korelasi masing-masing bervariasi dari 4.19 hingga 13.38 kJ/mol dan 

-1.59 hingga -0.41 kJ/mol. Oleh itu, kajian ini telah memberikan pelbagai data mengenai 

sinensetin, isosinensetin dan asid rosmarinik yang diekstrak dari daun O. stamineus dalam 

pengekstrakan SC-CO2 dan data ini dapat digunakan untuk penyelidikan lebih lanjut pada 

masa akan datang. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Malaysia is one of the 12 mega-diverse countries identified by the United 

Nations Environment Programme (UNEP) as harboring the majority of the earth’s 

species, which may have immense benefits for future generations (Nasir et al., 2015). 

More than 15,000 flowering plant species grow in Malaysia, and over 3,000 species 

have been identified as possible medicinal plants (Muhammad et al., 2011). Natural 

products have been used as a source of cosmetics, food, and traditional medicines. In 

recent years, herbal medicine has been gaining more acceptance and attention around 

the world, and the World Health Organization (WHO) estimates that 80% of the 

world’s population uses herbal medicine. Herbal medicine is a common element in the 

practice of ayurvedic, homeopathy, and traditional oriented medicine system by using 

plants for healing purpose. In addition, a variety of herbal products are increasingly 

available at the Malaysian local market, and many of these herbal products are sold as 

over the counter medicine. 

Plants are the most abundant natural entity on which folklore relies heavily on 

their pharmacological benefit. Therefore, numerous studies on the plant herbs have 

been studied extensively, such as Eurycoma longifolia, Labisia pumila, Andrographis 

paniculata, Swietenia macrophylla, and others. The other well-known herb in 

Malaysia is Orthosiphon stamineus (O. stamineus), which is used in the present study. 

O. stamineus is a perennial plant that contains a lot of medicinal benefits to humans, 

belongs to the family of Lamiaceae, also known as misai kucing. O. stamineus is 

natively grown in Southeast Asia, such as Malaysia, Indonesia, Thailand, Myanmar, 

and others where the leaves of O. stamineus are used as herbal tea, commonly known 

as Java tea. 



 

2 

The notion that O. stamineus is widely used for various diseases and disorders 

such as kidney stones, edema, gout, rheumatism, diabetes, high blood pressure, 

arthritis, detoxification, and others. Since the 1930s, the research on O. stamineus has 

been conducted extensively to meet its scientific evidence in various aspects. The 

aspects of phytochemical, pharmacological, toxicological, and clinical based on 

traditional approaches have been studied. It is approved that, the O. stamineus leaves 

extracts to have anti-inflammatory, antioxidant, antibacterial, antiangiogenetic, 

diuretic, hepatoprotective, and cytotoxic properties (Lee et al., 2015; Himani et al., 

2013; Mohamed et al., 2012; Cicero et al., 2012; Han and Hussin, 2007; Olah et al., 

2003). Plant-derived products have a wide variety of secondary metabolites. Adnyana 

et al., (2013) were found that about 116 secondary metabolites from O. stamineus 

leaves and have been isolated and classified as terpenoids, saponins, flavonoids, 

polyphenols, phenolic acids, and others. Flavonoids and phenolic acids are the main 

functional compound obtained in O. stamineus about 0.4 to 0.5% and 0.5 to 1.0%, 

respectively (Ghedira and Goetz, 2015). Hence, sinensetin and isosinensetin which are 

flavonoids and rosmarinic acid is a phenolic acid are the main interest compounds 

extracted from O. stamineus in this study. 

Sinensetin is a rare polymethoxyflavones (PMF) with 5 methoxy groups with 

carbonyl group being attached to their basic benzo-c-pyrone or flavone. Isosinensetin 

is an isomer-type PMF of sinensetin, which has a similar molecular weight with a 

different location of a methoxy group from C6 to C8 in the flavone backbone. On the 

other hand, rosmarinic acid is a highly valued natural phenolic ester of caffeic acid and 

3,4-dihydroxyphenyllactic acid with 4 hydroxyl groups in its structure. These three 

interest compounds were reported to have high beneficial to human health. Sinensetin 

was reported to have antidiabetic activity, antiangiogenesis, and diuretic activity 

(Ameer et al., 2012). Meanwhile, isosinensetin has more potent antiproliferative 

activity compared to sinensetin (Du and Chen, 2010). Rosmarinic acid is an excellent 

source of antioxidant activity (Gonçalves et al., 2019). 
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Traditionally, for processing herbs involves boiling them in water for hours so 

that most of the ingredients are extracted. While, another similar method consists of 

the use of conventional organic solvents where the most commonly used organic 

solvents are ethanol, ether, chloroform, and methanol (Martinez, 2008). The extract 

consists typically of various compounds, including some undesired substances that 

dissolve with the desired products. Therefore, further purification steps are necessary 

to remove the coextracted impurities. In addition, high boiling or extraction 

temperatures often lead to the degradation of heat-sensitive compounds. 

Moreover, traces of toxic solvents are hardly removed from the extracts, which 

directly influences the quality of the products. Furthermore, the extraction method is 

not notoriously inefficient were having a low concentration of the bioactive compound 

relative to the high energy input but expensive due to the treatment of large amounts 

of organic waste. Therefore, alternative extraction techniques with better selectivity 

and efficiency are highly desirable to extract the interest compounds (Goyeneche et 

al., 2018). 

The emergence of green chemistry for extraction processes occurred in the 

1990s intending to reduce energy consumption and replace the conventional solvents 

many extraction methods were introduced. High-pressure technology like supercritical 

fluid extraction (SFE) is a relatively new tool that is growing interest in an alternative 

technological process. SFE could minimize the environmental impact such as reduced 

energy consumption, less toxic residues, better quality, and safety of final products 

(Che Yunus, 2007). SFE of solids and liquids from natural materials is one of the most 

widely studied in recent years. The unique solvent properties of the SFE process where 

the operating condition above critical temperature and pressure. Fortunately, the most 

common solvent used is carbon dioxide (CO2), known as supercritical carbon dioxide 

(SC-CO2). SC-CO2 has a critical temperature close to ambient conditions of 31.1 ˚C 

that ideal method for thermolabile compound extraction and mild critical pressure of 

7.38 MPa. SC-CO2 has been successfully used as a green solvent to recover high-

value-added compounds from natural plants. CO2 is considered a non-toxic solvent, 

and the extract can be used with no further purification steps required. 
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Besides, the CO2 molecule has no net dipole moment, µ=0, it is nonpolar and 

serves as an ideal solvent for natural molecules that are nonpolar. However, it has a 

quadrupole moment, which it can also dissolve polar molecules but at relatively high 

pressure. Meanwhile, the interest compounds of sinensetin, isosinensetin, and 

rosmarinic acid are polar. Therefore, a modification on SC-CO2 must be done to avoid 

the extraction process occurred at high pressure. SC-CO2 is made by adding a small 

volume of modifiers to increase the polarity of CO2 and enhanced the solubility of 

interest compounds (Brachet et al., 2000; Sharif et al., 2015; Chai et al., 2020).  

The modifiers that have been studied in the SC-CO2 process are ethanol, 

acetonitrile, acetone, methanol, and water. Methanol is the most popular used among 

the other modifier due to its miscible with CO2. However, ethanol is a better choice 

for the extraction of natural products because of its lower toxicity. Generally, about 1 

to 15% of modifiers were used in the SC-CO2 process (Pereira and Meireles, 2010). 

On the other hand, the modifier could distort and swell the plant matrices as a 

consequence, favouring the penetration of CO2 into the plant matrices for extracting 

the solute or interest compounds (Casas et al., 2007). 

Several parameters were investigated in SC-CO2 extraction, which categorized 

as chemical and mechanical factors. Chemical factors were affected by temperature 

and pressure, while mechanical factors were affected by particle size, flow rate, 

modifier, and extraction time. Solubility is an indispensable parameter for the 

successful design of SC-CO2 techniques. The solute solubility in SC-CO2 mostly 

affected by two competing chemical parameters of vapour pressure, which is 

temperature dependence and density, which is pressure dependence. In addition, solute 

solubility data at various temperatures and pressures is tedious and time-consuming. 

Thus, correlations by using mathematical models of the solute solubility can be used 

to predict the solute solubility at any conditions of SC-CO2.  

Equation of State (EOS) like Soave-Redlich-Kwong and Peng-Robinson have 

been widely used to calculate and correlate the solubility of solutes in supercritical 

carbon dioxide (SC-CO2). However, the EOS required solute properties data such as 

critical properties, acentric factor, molar volumes and vapour pressure, which are 
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limited sources of this information. In addition, large deviations between experimental 

and calculated solubilities were obtained from EOS due to an error in sublimation 

pressure about 15.3 to 35.1% of error (González et al., 2001). Hence, semi-empirical 

models are well known for their simplicity; there is no need to use physicochemical 

properties of solute. The first semi-empirical density-based model for solubility 

correlation in SC-CO2 was proposed by Chrastil (Chrastil, 1982), and some 

modification has been done by del Valle and Aguilera (del Valle and Aguilera, 1988).  

In addition, the solubility of global yield in SC-CO2 has been reported widely; 

however, the solubility can be affected by molecular interactions between solutes 

where the extract yield consists of a mixture of interacting solutes. Thus, the solubility 

of extract yield does not express the solute solubility. These are due to the molecular 

interactions are attractive or repulsive forces between molecules which involve solute-

solute interactions and solute-solvent interactions. The solute-solute interactions are 

the intermolecular attractions between solute molecules, which related to the 

properties of a solute such as molecular weight, dipole moment, melting point, and 

functional compound. Meanwhile, the solute-solvent interactions are intermolecular 

attractions between solute and solvent molecules, which explained as solubility. The 

interactions that may involve in the molecular interactions are Van der Waals forces, 

dipole-dipole interactions, induced-dipole interactions, London dispersion forces, and 

hydrogen bonding. Therefore, the proposed models can predict an intermolecular 

interaction in SC-CO2 based on the coefficient of interaction, 𝑘 value where the 

competing effect of the solvent to dissolve the solute can be determined. 

1.2 Problem Statement 

SC-CO2 extraction is known as environment-friendly and generally regarded 

as a safe solvent by the Food Drug Administration (FDA) to extract natural product. 

However, there are various parameters to be considered in SC-CO2 extraction which 

can be categorized as chemical (temperature and pressure) and mechanical factors 

(mean particle size, modifier ratio, flow rate, extraction time). The temperature and 

pressure are the most importance parameters in SC-CO2 extraction where by 
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manipulation of temperature and pressure the properties of SC-CO2 changes and cause 

the increase or decrease the extraction efficiency. To date, most of the researchers 

combine the chemical and mechanical factors in SC-CO2 extraction of natural products 

however, it turns out that the mechanical factors gave insignificant effect toward the 

extraction efficiency. 

In SC-CO2 extraction of natural products, the solubility data is a crucial 

parameter needs to be determined so that the overall extraction behaviour can be 

explained. To date, most of the researchers’ study on the solubility of the extract yield 

from natural plants. However, the solubility of extract yield does not represent the 

solute solubility due to the mixture of interacting solutes that strongly affect the 

solubility. Besides, the recent solubility data of solute in SC-CO2 were reported on the 

pure component based on the cloud point calculation where the most preferrable 

method on the calculation of the solubility is determine its constant extraction rate 

phase or dynamic method. To date, there is no study was reported on the solubility of 

solutes extracted from the natural plant by dynamic method.  

In addition, the solubility data in SC-CO2 extraction is strongly affected by 

manipulation of the chemical parameters. However, the effect of intermolecular 

interaction on the solubility is less focused by the other researchers. Determination of 

solute solubility at various operating conditions is time-consuming; thus, a 

mathematical model of Chrastil and del Valle-Aguilera can be applied. The models 

can be used to predict the solute solubility as well as the interactions that occurred in 

the process by referring to the coefficient of interaction, 𝑘. In addition, the 

thermodynamic data of solutes on the enthalpy of solvation and vaporization in SC-

CO2 can be calculated from the correlation models. 

The solubility data of sinensetin, isosinensetin, and rosmarinic acid in SC-CO2 

extraction is still scarce. Sinensetin, isosinensetin and rosmarinic acid are main and 

potent bioactive compounds can be obtained from O. stamineus. The compounds have 

been proved that gives a lot of health benefit to the human being. In addition, O. 

stamineus is widely available in Southeast Asia especially Malaysia and has been listed 

in National Key Economic Area (NKEA) development program to produce a high 
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value of a product from local herbs where it is an opportunity to market our local herbs 

products to the world. The possibilities of the product sources of O. stamineus leaves 

extract are tablets, capsules, tea sachets, and others. Thus, the green extraction process 

such as SC-CO2 extraction is necessary to produce a high quality of products. 

1.3 Research Objectives 

Based on the preceding challenge and issues, this study is centred on the 

following objectives: 

(a) To determine the effect of the ethanol assisted SC-CO2 conditions on the 

concentration of sinensetin, isosinensetin and rosmarinic acid from O. 

stamineus leaves 

(b) To optimize the ethanol assisted SC-CO2 conditions on the concentration of 

sinensetin, isosinensetin and rosmarinic acid using response surface 

methodology 

(c) To evaluate and correlate the solubility of sinensetin, isosinensetin, and 

rosmarinic acid in ethanol assisted SC-CO2 using semi-empirical density-based 

models 

(d) To investigate the effect of solute molecular properties on the solubility of 

sinensetin, isosinensetin and rosmarinic acid based on the intermolecular 

interaction of solute-solute and solute-solvent interactions 
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1.4 Research Scope 

The scopes of this research are: 

i. Preliminary of mechanical parameters were studied on mean particle 

size, modifier ratio, flow rate and extraction time. Thus, the 

determination of ideal mechanical parameters was conducted at various 

mean particle size from 400 to 650 µm, modifier composition from 0 

to 10 v/v%, the flow rate from 3 to 5 mL/min and extraction time was 

fixed at 4 hours extraction 

ii. Chemical parameters of temperature and pressure were investigated on 

the extraction of sinensetin, isosinensetin and rosmarinic acid from O. 

stamineus leaves using SC-CO2 extraction. The extraction was 

performed in the range of 40 to 80 °C and 10 to 30 MPa for temperature 

and pressure, respectively 

iii. Identification and quantification of sinensetin, isosinensetin and 

rosmarinic acid extracted from O. stamineus leaves by using high-

performance liquid chromatography (HPLC) 

iv. Optimization of the extraction conditions for the sinensetin, 

isosinensetin and rosmarinic acid concentration using Design Expert 

software 11 with face-centered central composite design 

v.The solubility of the sinensetin, isosinensetin and rosmarinic acid was 

calculated by a dynamic method. Meanwhile, the correlation of solutes 

solubility was performed by the semi-empirical model of Chrastil and 

del Valle-Aguilera model  
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vi. The solutes molecular properties of sinensetin, isosinensetin and 

rosmarinic acid were predicted using the group contribution method by 

ICAS software and computational chemistry methods by Gaussian 09 

software 

vii. The effect of intermolecular interactions on solubility was determined 

as a function of solute properties like melting point, molecular weight, 

dipole moment and functional compound 

viii. Coefficient of interaction, 𝑘 from the correlation models was 

established to predict the intermolecular interactions either solute-

solute interaction or solute-solvent interaction in the process 

ix. The enthalpy of vaporization (∆𝐻𝑣) and solvation (∆𝐻𝑠) were 

calculated from the coefficient parameter of 𝑎 from the correlation 

models. 

 

1.5 Significance of Research 

The main contribution of this study is the solubility data of flavones which is 

sinensetin and isosinensetin, and phenolic acid which is rosmarinic acid from O. 

stamineus in ethanol assisted SC-CO2 extraction. To obtain the solubility data, several 

contributions has been achieved. First, the best extraction conditions of ethanol 

assisted SC-CO2 was obtained at a maximum concentration of sinensetin, isosinensetin 

and rosmarinic acid from O. stamineus leaves. The SC-CO2 extraction with ethanol 

assisted was enhanced the concentration of sinensetin, isosinensetin and rosmarinic 

acid from O. stamineus leaves compared with conventional extraction method is 

considered as a new finding since there is no available articles were reported. In 

addition, the chemical parameters of SC-CO2 extraction showed a significance effect 

on the extraction of sinensetin, isosinensetin and rosmarinic acid from O. stamineus 

leaves. 
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Next, the competing effect between sinensetin, isosinensetin and rosmarinic 

acid in SC-CO2 extraction can be observed by variations of solubility data at different 

extraction conditions. In addition, there is another element that could affect the solute 

solubility in SC-CO2 that has less attention by other researchers which is 

intermolecular interactions such as solute-solute and solute-solvent interaction. 

Besides, the semi-empirical models also play an important role in this study to 

correlate the solubility data of solute as well as to predict the interactions occur in the 

SC-CO2 system by the coefficient of interaction, 𝑘. The models used also can provide 

the thermodynamic data of solute such as enthalpy of vaporization and solvation. Apart 

from that, the available data from the present study is useful in scaling up and 

economic evaluation of industrial SFE processes. 

1.6 Limitation of Study 

The limitation of this study could be highlighted based on the extraction 

process parameters. The targeted compounds in this study were sinensetin, 

isosinensetin, and rosmarinic acid are polar compounds. Meanwhile, CO2 is a nonpolar 

but has large quadrupole moment which can interact with polar molecules but at very 

high pressure. Thus, the modification on the SC-CO2 extraction by adding a small 

amount of modifier is required to avoid the extraction process occurred at very high 

pressure to extract the targeted compounds. Since the polarity of CO2 has been 

enhanced, the maximum ethanol assisted SC-CO2 conditions of 30 MPa is satisfied. In 

addition, CO2 has a low latent heat of vaporization that led to less energy needed for 

the extraction process. Therefore, the maximum temperature of 80 °C is sufficient to 

extract the interest compounds even though their melting point is over 100 °C. 

Besides, for the software used in this study were ICAS and Gaussian 09. The 

ICAS software is able to predict the properties of solute based on the group 

contribution method, thus the properties of sinensetin and isosinensetin are the same 

due to similar functional group on the structure. Meanwhile, the Gaussian 09 software 

is only able to optimize the interactions of two similar molecules. The latest version of 

the software is not available yet which could help to improve the data. 
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1.7 Thesis Outline 

Overall, this thesis consists of 5 chapters. Chapter 1 began with an introduction 

to the research project. This chapter included the background of the research, problem 

statement, objective of the research, the scope of study, significant study and limitation 

of the research. A brief introduction of this research was explained on the O. stamineus 

and its interest compounds, SC-CO2, solubility models and intermolecular 

interactions. 

In Chapter 2, the literature review describes the fundamental theory and 

application used in this study. The chapter includes previous studies on the SC-CO2 

extraction process and the fundamental behind the process. In addition, it also provides 

an overview of the sample of O. stamineus leaves and interest compounds of 

sinensetin, isosinensetin and rosmarinic acid. Besides that, the chapter also describes 

an overview of response surface methodology (RSM). The molecular interactions were 

discussed in the chapter. The overview of Chrastil and del Valle-Aguilera also 

describes in the chapter. 

Chapter 3 discusses in detail on the research methodology used for SC-CO2 

extraction of O. stamineus. The pre-treatment of the sample and the determination of 

constant mechanical parameters were discussed. In addition, the comparison of the 

method of extraction between SC-CO2 and Soxhlet extraction was discussed. The 

solute properties were predicted using Gaussian 09 and ICAS software was explained 

in this chapter. The HPLC analysis was conducted to quantify the concentration of 

sinensetin, isosinensetin and rosmarinic. In addition, response surface methodology 

using central composite design was discussed in this chapter.  

In Chapter 4, the results and discussion obtained from the process conducted 

in Chapter 3 are described briefly. The results from the pre-treatment process are 

presented first, followed by the comparison of the extraction method. Next, the effect 

of extraction condition on the concentration of interest compounds is discussed. Then, 

the optimization of the operating conditions on the concentration of interest 

compounds was presented with the best extraction conditions. The solubility of 
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sinensetin, isosinensetin and rosmarinic acid was illustrated and correlated with the 

semi-empirical model of Chrastil and del Valle-Aguilera. The effect of intermolecular 

interactions on the solubility of solutes also discussed. Lastly, the enthalpy of 

vaporization and solvation of the solutes was obtained from the correlation models. 

The conclusion in Chapter 5 answers all the objectives stated in Chapter 1. 

Recommendations are also provided for future work and improvement.  
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