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ABSTRACT

Uncertainty quantification plays an increasingly important role in the
mathematical modeling of physical phenomena. One alternative of the mathematical
modelings is provided by fuzzy sets. The main research of this thesis is the study
of numerical method in solving fuzzy differential equations (FDEs). In this thesis,
the problem of FDEs in one-dimensional problem and two-dimensional problem
were considered, namely fuzzy logistic differential equation and fuzzy predator-
prey systems. The problems were solved using extended Runge-Kutta fourth order
(ERK4) method. Nevertheless, due to the lacking of numerical methods available for
solving polynomial type of FDEs, the ERK4 method is incorporated with polynomial
interpolation technique in order to reduce the high degree of polynomials during
multiplication operation. Parameter estimation provides tools for the efficient use of
data in the estimation of the parameters that appears in the mathematical models. Thus,
this study presents the parameter estimation using two techniques of minimization
which are center difference differentiation and robust gradient minimization. Stability
analysis and convergence proof of the approximation methods had been carried
out. Hence, this research is carried out in order to solve these problems. The
obtained numerical results prove that the ERK4 method with incorporated polynomial
interpolation technique produce higher accuracy results and may become an alternative
method for other uncertainty problems.
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ABSTRAK

Kuantifikasi ketidakpastian memainkan peranan yang semakin penting dalam
pemodelan matematik bagi fenomena fizikal. Salah satu alternatif dalam pemodelan
matematik adalah disediakan oleh set kabur. Kajian utama tesis ini ialah mengkaji
tentang kaedah berangka dalam menyelesaikan persamaan pembezaan kabur (FDEs).
Dalam tesis ini, FDEs dalam satu dimensi dan dua dimensi dipertimbangkan,
iaitu persamaan pembezaan logistik kabur dan sistem pemangsa-mangsa kabur.
Masalah-masalah ini diselesaikan dengan menggunakan kaedah lanjutan Runge-Kutta
peringkat keempat (ERK4). Walau bagaimanapun, disebabkan kekurangan kaedah
berangka yang tersedia dalam menyelesaikan FDEs jenis polinomial, kaedah ERK4
telah digabungkan dengan teknik interpolasi polinomial untuk mengurangkan kuasa
yang tinggi dalam polynomial semasa operasi pendaraban. Anggaran parameter
menyediakan alat untuk penggunaan data yang cekap dalam anggaran parameter yang
ada dalam model matematik. Oleh itu, kajian ini mengemukakan pendekatan untuk
anggaran parameter menggunakan dua teknik peminimuman iaitu pembezaan beza
tengah dan peminimuman mantap berdasarkan kecerunan. Analisis kestabilan dan
bukti penumpuan untuk kaedah penghampiran telah dijalankan. Maka, penyelidikan
ini adalah dijalankan untuk menyelesaikan masalah-masalah ini. Hasil berangka yang
diperoleh membuktikan bahawa kaedah ERK4 dengan gabungan teknik interpolasi
polinomial menghasilkan penyelesaian berketepatan tinggi dan mungkin menjadi
kaedah alternatif untuk masalah ketidakpastian yang lain.
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µã - Membership function of fuzzy set ã
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Although ecological system modeling has been applied for decades, still

inherent uncertainties, which need to be taken into account in order to improve the

accuracy and predictability of estimates. The reasoning generally used is that the

mathematical description of the uncertainty should be able to represent the lack of

information and the type of information given. If, for example, a real parameter is only

known to be within certain bounds, then an interval is a perfect representation of this

uncertainty.

In applied problems of population model, for instance, it is not always possible

to know exactly the initial number of individuals in a given environment. In general,

one gets information by means of linguistic statements as the initial condition is

approximately y0. To the extent that the label approximately is imprecise, it can be

modeled as a fuzzy set. Thus, linguistic statements like these can be regarded as fuzzy

restrictions on the values taken by the variable of interest [1].

Since Zadeh [2] introduced the concept of fuzzy set and corresponding fuzzy

operations, enormous efforts have been dedicated to the development of various

aspects of the theory and applications of fuzzy systems, particularly on the theory

of differential equations with uncertainty. Therefore, fuzzy differential equations

(FDEs) have been adapted as natural approach to model dynamical systems under the

possibility of uncertainty. Fuzzy dynamical systems based on FDEs are also widely

applied in many fields such as fuzzy control systems [3, 4], bifurcations of fuzzy
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nonlinear dynamical systems [5], and artificial system [6].

In the last few years, many works have been performed by several authors on

numerical solutions of FDEs. One of the most common methods used to numerically

solve these equations is the RK method. Most efforts to increase the order of RK

method are accomplished by increasing the number of Taylors series terms used, and

thus the number of function evaluations [7]. Here, the extended Runge-Kutta (ERK)

method for departure point calculation is introduced. The ERK method in order to

enhance the order of accuracy of the solutions is by evaluations of both f and f ′.

Specifically, the proposed formulae with f ′ is more efficient for cases where f ′ is

easier to evaluate than f [8].

Fuzzy equation can be regarded as a generalized form of the fuzzy polynomial,

which can be immediately used to validate the convexness in real time. Fuzzy

polynomials are used to form a suitable setting for mathematical modeling of real

world problems which often come with uncertainties and vagueness. One approach

is by using interpolation technique. Interpolation of the function f(x) includes O(n)

time complexity at n data points [9]. The most importance advantage of this approach

is that, it is capable of greatly reduce the degree of polynomials while still maintaining

high accuracy of the numerical solution.

The extraction of information from data is one of the fundamental tasks in

engineering and science. Parameter estimation is a discipline that provides tools for

efficient use of data in the estimation of constants in mathematical models, besides as

an aid in the modeling of phenomena.

Parameter estimation is necessary to assist problem solving in diverse areas

related to the modeling of ecology. Example and application of parameter estimation

in this research, however, are directed to the common problems in the engineering and

science fields, where FDEs and ordinary differential equations are commonly used in

constructing population model.
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The increasing need of parameter estimation has been made easy by emergence

of computers, resulting to more practicable solutions of parameter estimation for a

great array of applications. Estimation was first extensively discussed by Legendre

1806 [10], who first considered comprehensive treatment of the method of least

squares, although priority for its discovery was shared with Gauss. Gauss is recognized

as the first to use parameter estimation, which is the method of least squares, in

connection with the orbit determination of minor planets [11].

1.2 Statement of Problem

When a physical problem is transformed into a deterministic initial value

problem

y = (t, y(t)), y(0) = y0, (1.1)

the modeling is not entirely perfect, since the initial value may not be known exactly

and the function may contain unknown parameters. If these values are known

through some measurements, they are necessarily subjected to errors. Analysis on

the effect of these errors will lead to the study on the qualitative behavior of the

solution, as in Equation (1.1). If the nature of errors is random, then instead of

employing deterministic problem as given in the Equation (1.1), a random differential

equation with random initial value or random coefficients will be used. However, if

the underlying structure is not probabilistic, due to subjective choices, it would be

appropriate to employ FDEs.

In the physical problem given by Equation (1.1), it is assumed that the initial

value is the fuzzy number, to obtain the FDE.

In solving the problem of FDEs, some limitations need to be addressed. From

the basic operation of fuzzy with polynomial operation, degree of polynomial will

develop very fast. In this research, the extended Runge-Kutta fourth order (ERK4)
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method has been incorporated with polynomial interpolation technique to reduce the

degree of polynomial, which is the objective of this thesis.

To achieve the objective, the following questions need to be clarified:

(a) What is the ERK4 scheme for FDEs?

(b) How to incorporated the ERK4 method with the polynomial interpolation

technique to FDEs?

(c) What is the accuracy, stability analysis, and convergence of ERK4 method with

polynomial FDEs?

(d) How to estimate the unknown parameter of FDEs?

1.3 Research Objectives

The objectives of this research are as follows:

(a) To apply a numerical algorithm for solving FDEs using ERK4 method.

(b) To couple ERK4 method with polynomial interpolation technique in numerical

computation.

(c) To analyze the accuracy, stability analysis, and convergence of ERK4 method with

polynomial FDEs.

(d) To estimate parameters using parameter estimation technique via for prediction of

population model.
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1.4 Scope of the Study

For this research, FDEs have been taken into consideration. The problems

considered in this research involve the one-dimensional (1D) FDEs and two-

dimensional (2D) FDEs, which are fuzzy logistic differential equation (FLDE) and

fuzzy predator-prey systems (FPPS). The development of logistic equation and

predator-prey equation with fuzzy initial value problem is based on the concept of

fuzzy algorithm. ERK4 method has been employed to find a numerical solutions for

the problems. The formula uses both function, f and derivative of function, f ′ in

order to improve the numerical solution. The basic operation of fuzzy will lead to

emergence of degree of polynomial. Therefore, polynomial interpolation technique

governed by Vandermonde matrix has been coupled with ERK4 method to reduce the

degree of polynomial. Numerical algorithm has been derived for simulation using

Microsoft Visual C++ compiler. Next, accuracy, stability analysis, and convergence

of the proposed method have been measured. Lastly, minimization techniques via

center difference differentiation and robust gradient minimization have been employed

to estimate the parameters of the FLDE.

1.5 Significance of Findings

The influence of uncertainty in many fields of applications such as engineering,

physics, and biology contributes to an accelerating interest in the development of

population model with fuzzy problems. Therefore, numerical results obtained for all

problems presented in this thesis are significant as reference for future investigations,

prediction, and even for validation purposes. The modification of algorithms in this

research are also significant contribution; for calculation of polynomials in solving

FDEs which require numerical methods.
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1.6 Thesis Organization

This thesis is divided into six chapters. The content of each chapter is briefly

delineated below.

Chapter 1 introduces the purpose of this research, covering the statement of

problem, research objectives, scope, as well as significance of research. This chapter

also addresses the identification of research gap and methods to achieve the research

objective.

Chapter 2 clarifies the definitions and properties related to fuzzy set. This

chapter reviews population model and numerical methods of RK method in detail.

Polynomial interpolation, with related important technique, is reviewed. In order to

solve the FDEs, these reviews have been significantly used as a background study, as

described in Chapter 3.

Chapter 3 presents the derivation for fuzzy initial value problem for 1D

FDEs and 2D system FDEs, including derivation of ERK4 method for FDEs. Also

highlighted is the development of numerical algorithm to perform numerical example,

so that the efficiency of the ERK4 method incorporated with polynomial interpolation

can be assured. Next, the accuracy, stability analysis, and convergence proof for the

proposed method are presented.

Chapter 4 addresses numerical example for FLDE and FPPS for the validation

of the numerical solution.

Chapter 5 highlights the modeling a real phenomena due to the fact that the

natural systems in ecology have the after effect property and are subjected to the

uncertainty phenomena. Also discussed in this chapter are parameter estimations

obtained through minimization technique via center difference differentiation and
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robust gradient minimization, as well as validation of the minimization techniques

efficiency.

Chapter 6 presents the conclusion of the whole content of the thesis. Some

recommendations for future study based on present solution are also highlighted in

this chapter.
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