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ABSTRACT 

The presence of new emerging pollutants (NEPs) residue in wastewater 

effluents, surface water and drinking water even after being subjected to the 

conventional treatment methods is an emerging concern. Hence, a few advanced 

technologies were introduced, such as pressure-driven membranes, for example, 

nanofiltration (NF) and reverse osmosis (RO). However, their performance has been 

limited due to high-pressure requirement and low permeate flux, leading to high 

operational costs. In this study, the utilization of the electrospun fibre membranes 

(EFMs) was explored as they possesses several advantages, such as the lower 

operating pressure requirement and ability to produce higher permeate flux that is 

favourable for adsorption technology. The nylon 6, 6 (Ny), polysulfone (PSf) and 

polystyrene (PSty) EFMs were fabricated by using the electrospinning technique and 

used for the adsorption of bisphenol A (BPA), acetaminophene (ACTP), 

sulfamethoxazole (SMX) and ibuprofen (IBP). The optimum conditions, such as 

applied voltage, flow rate and inner diameter of needle of the electrospinning process 

for: i) Ny (26 kV, 0.4 mL/h, 0.50 mm), ii) PSf (15 kV, 2.5 mL/h, 0.50 mm) and iii) 

PSty (16 kV, 1.6 mL/h, 0.60 mm) are considered achieved when continuous and stable 

streaming jet without any dripping and clogging with minimal beaded fibres is 

observed. The field emission scanning electron microscopy (FESEM) result showed 

that the average fibre diameter of Ny, PSf and PSty EFMs was measured at 98, 1291 

and 1575 nm, respectively. The contact angle analysis of Ny EFM revealed a 

hydrophilic character, while PSf and PSty EFMs exhibited hydrophobic character. 

Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of 

hydroxyl groups in the BPA molecule, carbonyl and amine groups in Ny EFM and 

sulfonyl groups in PSf. These results demonstrated that the hydrogen bonding probably 

could be formed between Ny and PSf EFM with the BPA molecules, thus facilitating 

the BPA adsorption. When compared to ACTP, SMX, and IBP, the adsorption of BPA 

by Ny EFM was more effective. The adsorption of BPA in ultrapure water (UPW) by 

using five layers of Ny EFM was 96%, and the permeate volume of BPA solution was 

recorded at 193 mL after 30 mins of operation. The result also showed that both 

composites of Ny+PSf and Ny+PSty EFMs enhanced the permeate volume of BPA 

solution, which was recorded at 454 and 290 mL, respectively, after 30 mins of 

operation. The experiment for membrane regeneration and reusability for composites 

of Ny+PSf and Ny+PSty EFMs through three cycles of BPA adsorption in UPW was 

successful. This good performance was due to the BPA adsorption showing a 

consistent performance throughout the three cycles of operation. However, the volume 

of permeate BPA solution for both composites of Ny+PSf and Ny+PSty EFMs 

decreased from the first to the third operation cycle, from 454 to 150 mL and 290 to 

119 mL, respectively. Additionally, the membrane regeneration and reusability for 

composite of Ny+PSf EFM through three cycles of BPA adsorption in tap water was 

also successful with the adsorption of 98 - 99% throughout the three cycles of 

operation. Meanwhile, the volume of permeate BPA solution was consistent, recorded 

at 348, 352 and 365 mL during the first, second and third cycles of operation, 

respectively. The successful BPA adsorption makes the Ny+PSf EFM composite a 

promising and suitable candidate for use in advanced water filtration systems. 
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ABSTRAK 

Pada masa kini, kehadiran baki pencemar baharu (NEP) dalam efluen air 

buangan, air permukaan dan air minuman masih dapat dikesan walaupun setelah 

menjalani kaedah rawatan konvensional. Oleh itu, beberapa teknologi canggih seperti 

nanotapisan (NF) dan osmosis songsang (RO) diperkenalkan, namun prestasinya 

terhad disebabkan oleh keperluan tekanan yang tinggi, hasil fluks yang rendah dan 

membawa kepada kos operasi yang tinggi. Dalam kajian ini, penggunaan membran 

gentian elektroputaran (EFM) mempunyai beberapa kelebihan seperti dapat beroperasi 

pada tekanan yang lebih rendah dan menghasilkan jumlah fluks yang lebih tinggi serta 

sesuai digunakan untuk teknologi penjerapan. Nilon 6, 6 (Ny), polisulfon (PSf) dan 

polistirena (PSty) dihasilkan dengan menggunakan teknik elektroputaran dan 

diaplikasikan untuk penjerapan bisfenol A (BPA), asetaminofen (ACTP), 

sulfametoksazol (SMX) dan ibuprofen (IBP). Keadaan optimum seperti bekalan 

voltan, kadar aliran larutan polimer dan diameter dalaman jarum untuk elektroputaran: 

i) Ny (26 kV, 0.4 mL/h, 0.50 mm), ii) PSf (15 kV, 2.5 mL/h, 0.50 mm) dan iii) PSty 

(16 kV, 1.6 mL/h, 0.60 mm) dianggap tercapai apabila aliran jet yang berterusan dan 

stabil tanpa menitis dan tersumbat dengan gentian bermanik yang minimum 

diperhatikan. Keputusan mikroskop elektron pengimbas pelepasan medan (FESEM) 

menunjukkan bahawa diameter gentian untuk Ny, PSf dan PSty EFM masing-masing 

diukur pada 98, 1291 dan 1575 nm. Analisis sudut permukaan untuk Ny EFM 

menunjukkan sifat hidrofilik, sementara PSf dan PSty EFMs menunjukkan sifat 

hidrofobik. Keputusan spektroskopi inframerah transformasi fourier (FTIR) 

menunjukkan kehadiran kumpulan hidroksil dalam molekul BPA, kumpulan karbonil 

dan amina dalam Ny EFM, dan kumpulan sulfonil dalam PSf. Keputusan ini 

memungkinkan ikatan hidrogen boleh terbentuk antara Ny dan PSf EFM dengan 

molekul BPA dan mampu untuk menjerap BPA. Sementara itu, keputusan 

menunjukkan bahawa Ny EFM dapat menjerap BPA dengan berkesan berbanding 

ACTP, SMX dan IBP. Penjerapan BPA ke dalam air ultra tulen dengan menggunakan 

lima lapisan Ny EFM ialah 96% dan isipadu resapan larutan BPA direkodkan pada 

193 mL selepas 30 minit operasi. Keputusan juga menunjukkan kedua-dua komposit 

Ny+PSf dan Ny+PSty EFMs meningkatkan isipadu resapan larutan BPA yang 

direkodkan masing-masing pada 454 dan 290 mL selepas 30 minit operasi. 

Eksperimen untuk regenerasi membran dan kebolehgunaan semula komposit Ny+PSf 

dan Ny+PSty EFMs melalui tiga kitaran penjerapan BPA di UPW adalah berjaya. 

Prestasi yang baik ini disebabkan oleh prestasi penjerapan BPA yang konsisten 

sepanjang tiga kitaran operasi. Bagaimana pun, isipadu resapan larutan BPA untuk 

kedua-dua komposit Ny+PSf dan Ny+PSty EFMs menurun daripada kitar pertama 

hingga kitar ketiga, masing-masing dari 454 kepada 150 mL dan 290 kepada 119 mL. 

Selain itu, kejayaan regenerasi membran dan kebolehgunaan semula komposit Ny+PSf 

EFM melalui tiga kitaran penjerapan BPA dalam air paip telah tercapai apabila 

penjerapan BPA menunjukkan 98 - 99% melalui kitaran operasi pertama hingga 

ketiga. Sementara itu, isipadu resapan larutan BPA adalah konsisten di mana 348, 352 

dan 365 mL masing–masing telah dihasilkan semasa kitaran operasi pertama, kedua 

dan ketiga. Kejayaan penjerapan BPA oleh komposit Ny+PSf EFM menjadikan bahan 

ini sesuai untuk diaplikasikan dalam sistem penapisan air yang termaju.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

The availability of safe drinking water is a fundamental issue of public health 

that highlights to the significance of safeguarding the water supply. Good quality 

drinking water is required to maintain a clean environment and good health of the 

world population. In 2017, approximately 800 million people worldwide lacked access 

to even the most basic drinking water services, significantly affecting their health and 

wellbeing (UNICEF and WHO, 2019; Price et al., 2021).  A water source is considered 

safely managed if it is accessible on the premises, available when needed (defined as 

sufficient water for the last week or available for at least 12 hours per day) and free 

from contamination (UNICEF and WHO, 2019). In Malaysia, ensuring access to safe 

drinking water in a population remains a significant challenge. This is exacerbated by 

the inadequacy of regulations on the protection and surveillance of drinking water 

quality and public awareness on pharmaceutical residues in drinking water (Nasir et 

al., 2019).  

 

 

Drinking water is the final product of the production chain from source to tap. 

The primary drinking water sources are obtained from surface water and groundwater 

(Berg et al., 2019).  High-quality surface water is critical in maintaining healthy 

ecosystems and ensuring safe drinking water. One issue threatening the quality of our 

drinking water is the presence of new emerging pollutants (NEPs) which generally 

belong to three broad groups such as industrials, pesticides and pharmaceuticals and 

personal care poducts (PPCPs) (Murray et al., 2010). To date, there is no specific 

policy or regulations dedicated to NEPs as per National Water Quality Standards for 

Malaysia (Jabatan Alam Sekitar Kementerian Alam Sekitar, 2021).   
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Moreover, the presence of NEPs that may act as endocrine-disrupting 

chemicals (EDC) has been reported in wastewater treatment plant (WWTP) effluent, 

surface water, as well as tap water (Esplugas et al., 2007; Luo et al., 2014). EDC is 

defined by the Organization of Economic and Cooperative Development (OECD) as 

an exogenous substance or mixture that alters the function(s) of the endocrine systems 

and consequently causes adverse health effects in an intact organism or its progeny or 

(sub) populations (Esplugas et al., 2007).  However, compounds that should be 

classified as EDC remain to be adequately addressed (Kim et al., 2007). Among some 

notable NEPs are bisphenol A (BPA), acetaminophene (ACTP), sulfamethoxazole 

(SMX) and ibuprofen (IBP). The molecular structures of the BPA, ACTP, SMX and 

IBP are shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The molecular structures of NEP compounds, a) BPA, b) ACTP, c) 

SMX and d) IBP 

(a) 

(d) 

(c) 

(b) 
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It was reported that BPA had been detected in all tap water samples from 

houses in Kuala Lumpur (the source of water is located at the Langat River) at levels 

ranging from 3.5 to 59.8 ng/L (Santhi et al., 2012).  BPA is an estrogenic EDC widely 

used in producing polycarbonate, epoxy resins and as a non-polymer additive in 

plastics (Saal and Welshons, 2006).  Another form of NEP is IBP, a non-steroidal anti-

inflammatory drug (NSAID).  It works by reducing hormones that cause inflammation 

and pain in the body and is used widely by arthritis patients (Choong et al., 2019).  IBP 

has been detected at concentrations of 72 ng/L in surface water (Palma et al., 2020). 

SMX is a sulfonamide antibiotic commonly used in human, aquaculture and livestock 

breeding. SMX is categorised as a pharmaceutically-active compound with its half-life 

found to be between 85 to 100 days (Chang et al., 2019). A literature search showed 

that SMX compounds were found in tap drinking water of residential areas in Putrajaya 

and Kajang, Malaysia, with concentrations of 0.16 and 0.23 ng/L, respectively 

(Praveena et al., 2019; Nasir et al., 2019). Another commonly used NSAID is ACTP, 

a widely used NSAID to treat headaches, fever and chronic pain from cancer 

(Periyasamy and Muthuchamy, 2018). About 58 to 68% of ACTP is excreted from the 

human body through urine after therapeutic use (Slamani et al., 2018). ACTP has been 

reported to be found in the surface water of Brisbane River, Australia, with a 

concentration of 6 ng/L (Anim et al., 2020).  ACTP with a concentration of 6.2 ng/L 

has also been detected in tap drinking water even after undergoing conventional 

treatment (Wang et al., 2011). 

 

 

The presence of EDCs in the environment can lead to the breakage of eggs of 

birds, fishes and turtles; feminisation of male fish; deteriorate reproductive system in 

fishes, reptiles, birds and mammals; and affect the immunologic system of marine 

mammals (Esplugas et al., 2007). Furthermore, the presence of EDC in human beings 

is reported to cause a reduction of the amount of sperm, increase the incidence of 

breast, testicle and prostate cancers (Esplugas et al., 2007). Xu et al. (2019) state that 

some PPCPs and pesticides at the ng/L to µg/L levels are potentially harmful to the 

ecological environment and human health, such as carcinogenicity, teratogenicity, 

mutagenicity, endocrine-disrupting effects and reproductive developmental toxicity. 

More alarmingly, PPCPs may induce various physiological changes, reversible or not, 
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in non-target aquatic organisms such as macroalgae, molluscs, crustaceans and fish in 

the marine environment (Palma et al., 2020). 

 

 

A number of researchers had proposed a variety of conventional and advanced 

treatment processes in order to reduce the concentration of NEPs in water. The 

suggested conventional treatment processes include flocculation (Kooijiman et al., 

2020), sand filtration (Sabogal et al., 2020), coagulation and sedimentation (Lin et al., 

2016) and filtration and chlorination (Azzouz and Ballesteros, 2013). In addition, 

many researchers suggest advanced treatments such as activated carbon (powdered 

activated carbon, PAC or granular activated carbon, GAC) (Rossner et al., 2009; Acero 

et al., 2012), oxidation (Azuma et al., 2019; Lin et al., 2016), NF (Escalona et al., 

2014) and RO (Yuksel et al., 2013). 

 

 

However, the presence of NEPs residue in wastewater effluents, surface water 

and drinking water can still be detected even after being subjected to the 

aforementioned conventional treatment methods. This is because the current 

technology in sewage treatment plants (STPs) are not designed to eliminate all the 

NEPs completely (Nasir et al., 2019). In Malaysia, this has been proven by a few 

researchers, who reported the presence of NEPs in wastewater, surface water and 

drinking water such as ACTP (Al-Odaini et al., 2010), SMX (Praveena et al., 2018; 

Nasir et al., 2019; Praveena et al., 2019) and BPA (Santhi et al., 2012). 

  

 

On the other hand, a few researchers have explored the use of advanced 

technologies such as ozonation, adsorption by activated carbon and pressure-driven 

membrane such as NF and RO (Azuma et al., 2019; Rossner et al., 2009; Escalona et 

al., 2014). Although ozonation is an effective technique to remove NEPs, it has the 

inherent hazardous tendency to produce toxic oxidation by-products such as 

assimilable organic carbon (AOC) and total aldehydes, which impair the sustainability 

of wild fish populations (Wert et al., 2007; Stalter et al., 2010). According to Stalter 

et al. (2010), ozonation should be followed by post-filtration with sand to adsorb the 

oxidation by-product, subsequently leading to higher operational costs. Furthermore, 

the main disadvantage of the activated carbon treatment stands in the difficulty of post-

treatment disposal of used and contaminated carbon (Stalter et al., 2010).  
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The application of membrane possesses several vital attributes such as low 

energy consumption, no requirement of chemical substances to be added, the 

possibility to easily join membrane processes with other unit processes (hybrid 

processes) and the separation can be carried out in mild environmental conditions that 

make them very substantial in separation technology (Figoli et al., 2010). In previous 

works of research, it has been demonstrated that the NEPs can be effectively adsorbed 

by using membrane technologies; examples of which include NF (Escalona et al., 

2014; Yuksel et al., 2013), RO (Yuksel et al., 2013) and microfiltration (MF) (Bing et 

al., 2010). The membranes in those studies were provided by Dow Filmtec, GE 

Osmonics and Toray Corporation, respectively. Meanwhile, a few researchers had 

successfully fabricated membranes via the phase inversion method for NEPs 

adsorption (Wu et al., 2016; Nasseri et al., 2018). However, there are a few limitations 

that restrict the performance of these membranes.  

 

 

For example, the operation of NF and RO requires high pressure and low 

permeate flux. Due to that, the procedure will limit the efficiency of the membrane, 

thus leading to higher costs of operation (Nghiem et al., 2006; Kimura et al., 2003; 

Yuksel et al., 2013; Escalona et al., 2014). According to their studies, the permeate 

flux produced was low since the NF and RO membranes have a tighter structure that 

will increase the flow resistance of the solution across the membranes. Meanwhile, a 

few researchers reported that the small particulates presented in the MF membrane 

could adsorb, accumulate, or precipitate within or on the membrane polymer, which 

will lead to membrane fouling (He and Vidiv, 2016; Park et al., 2020). Fouling in the 

MF membrane will cause a more severe permeate flux decline due to the formation of 

a thick and compressed cake layer on the surface of the membrane. To reduce the MF 

membrane fouling, the integration of nanoparticles (NPs) into polymeric membranes 

via phase inversion is one of the proposed methods (Akbari et al., 2018). However, 

the performance of this method is limited due to the low dispersion and agglomeration 

of the NPs in polymeric membranes.  

 

 

One of the techniques to fabricate membranes for the adsorption of NEPs is the 

electrospinning method. The electrospun fibre membranes (EFMs) possess several 

attributes that make them very attractive in separation technology, such as high 
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porosity, interconnected open pore structure ranging from sub-micron to several 

micrometres and high permeability for pure water and micro-particles (Gopal et al., 

2017; Zahari et al., 2018). The electrospinning technique is a well-known process to 

produce novel fibres with diameters in the range of from less than 3 nm to over 1000 

nm (Renekar et al., 2000). The nano-prefix is applied to a material having dimensions 

ranging from less than 100 to 800 nm (Wong et al., 2017). However, a previous 

researcher mentioned that around 100 fabricated nanofibres from different polymers 

using the electrospinning process having a diameter ranging from 40 to 2000 nm (Awal 

et al., 2011).     

 

 

Among the materials that are suitable to be for the preparation of EFMs are 

nylon 6, 6 (Ny), polysulfone (PSf) and polystyrene (PSty). Ny has played an essential 

role in several applications due to its intrinsic hydrophilicity, good mechanical 

properties, outstanding durability, chemical and abrasion resistance, high thermal 

stability and enhanced electrochemical properties (Choi et al., 2010; Palazzetti et al., 

2013; Huang and McCutcheon, 2014; Yanilmaz et al., 2014). As for PSf, it is 

commonly fabricated as a nanofibre membrane due to its excellent mechanical 

strength, chemical resistance, thermal and hydraulic stability (Obaid et al., 2015). 

Meanwhile, PSty is most commonly used as a commodity polymer in packaging, 

insulation and filtration (Uyar and Besenbacher, 2008). For filtration application, PSty 

is a promising membrane material due to its excellent characteristics such as being 

cost-friendly, good chemical inertia, high hydraulic stability, easy to handle and 

superhydrophobic behaviour (Moatmed et al., 2019).  

 

 

In this work, Ny, PSf and PSty EFMs were fabricated by using the 

electrospinning method. During the fabrication process of EFMs, the electrospinning 

parameters such as applied voltage, needle size and flow rate of polymer solution were 

optimised. The fabricated EFMs were then characterised by field emission scanning 

electron microscopy-energy dispersive X-ray (FESEM-EDX), contact angle analyser, 

tensile strength tester, zeta potential analyser and fourier transform infrared 

spectroscopy (FTIR) to measure the chemical and physical properties. The efficiency 

of the fabricated EFMs was evaluated through NEPs adsorption, wherein the targeted 
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NEPs were BPA, ACTP, SMX and IBP. The sample solution was then analysed by 

using high-performance liquid chromatography (HPLC). 

 

 

 

 

1.2       Problem Statement 

 

 

Numerous researchers reported that NEPs such as BPA, SMX and IBP could 

be found in wastewater, surface water, as well as our drinking water (Al-Odaini et al., 

2010; Praveena et al., 2018; Nasir et al., 2019; Praveena et al., 2019; Santhi et al., 

2012). This is a clear indication that the current WWTP and drinking water treatment 

plant (DWTP) in Malaysia are not designed for the adsorption of NEPs. The situation 

is worsened by the lack of specific policy or regulations, including the permissible 

level dedicated to NEPs in the National Water Quality Standards for Malaysia.  

 

 

 To address this issue, a few researchers proposed pressure-based membrane 

processes; NF, RO and MF. One of the advantages of the NF and RO is the possession 

of a very tight structure of membranes that can potentially adsorb NEPs. However, the 

performance of these technologies is limited due to several factors, such as the high-

pressure requirement and low permeate flux production, leading to high operational 

costs. These issues were highlighted in a few studies, where commercial NF and RO 

membranes were utilised for the adsorption of NEPs. The applied pressure during the 

filtration process was recorded at 6 to 12 bar, while the permeate flux produced was 

low, at 0.9 to 77 L/m2h (Escalona et al., 2014; Yuksel et al., 2013; Kimura et al., 2003; 

Nghiem et al., 2006). Additionally, the application of MF water treatment is also 

limited by membrane fouling (He and Vidiv, 2016; Park et al., 2020). Meanwhile, the 

fabrication of NP-polymeric MF membrane via the phase inversion method is 

restricted due to low dispersion and NPs exhibiting lower stability in the polymer 

matrix that will impact the membrane performance (Akbari et al., 2018). 

  

 

In this study, EFMs from materials such as Ny, PSf and PSty were fabricated 

by using the electrospinning method. Based on the literature, the fabricated EFMs 

possess a loose structure of membrane that could be confirmed through FESEM 
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images. The reported literature mentioned that the fabricated EFMs that have loose 

structures could produce high permeate flux, even at the low pressure of 1 bar 

(Aussawasathien et al., 2008). Furthermore, the Ny EFM that contain carbonyl and 

amine group probably could form hydrogen bonding with the NEPs, thus facilitating 

the NEPs adsorption. Meanwhile, PSf and PSty are also hydrophobic membranes, 

which will further enhance permeate flux.  

 

 

 

 

1.3 Objective of Research 

 

 

The objectives of this research were: 

 

  

a) To fabricate Ny, PSf and PSty based EFMs by using the electrospinning 

method and investigate the physical and chemical properties of the EFMs 

produced using optimised parameters. 

b) To evaluate the efficiency of the fabricated Ny EFMs in the BPA, ACTP, SMX 

and IBP adsorption.   

c) To evaluate the efficiency of the fabricated composites of Ny+PSf and 

Ny+PSty EFMs in the BPA adsorption.  

 

 

 

 

1.4       Scope of Research 

 

 

 In this research, three different EFMs, namely Ny, PSf and PSty, were 

fabricated using the electrospinning method. During the preparation of EFMs, the 

operational conditions of the electrospinning process, such as applied voltage, flow 

rate of polymer solution and inner diameter of the needle, were optimised. The 

optimisation of the applied voltage was varied in the ranges of 1 to 26, 1 to 15 and 1 

to 16 kV for Ny, PSf and PSty EFMs, respectively. Meanwhile, the optimisation of 

flow rate was carried out by varying from 0.1 to 0.4, 0.1 to 2.5 and 0.1 to 1.6 mL/h for 

Ny, PSf and PSty EFMs, respectively. Furthermore, the optimisation for the inner 
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diameter of the needle was carried out by varying at 0.45, 0.5 and 0.6 mm for Ny, PSf 

and PSty EFMs.   

 

 

The morphology, fibre diameter and elements of the EFMs were studied by 

utilising FESEM-EDX, while the water contact angle was measured to evaluate the 

hydrophobicity of the EFMs. The mechanical strength of the EFMs was assessed by 

using a tensile strength tester. The zeta potential analyser was used to study the 

steaming potential of the EFMs and the functional groups of the EFMs were 

determined by using FTIR. Since the physical and chemical properties for each Ny, 

PSf and PSty EFMs have been characterized, and very likely bear the same properties 

as the composites of Ny+PSf and Ny+PSty EFMs, the characterization for both 

composites of EFMs was not performed as part of the study. Meanwhile, all the 

fabricated EFMs are classified as microfiltration membranes since they have pore sizes 

ranging from sub-micron to several micrometres (Gopal et al., 2007). Since the EFM 

are well known for having larger and high porosity, the porosity analysis was not 

carried out as part of a study. Furthermore, the performance of composite between PSf 

and PSty EFMs was not evaluated as part of the study. This is due to the fact that both 

EFMs possess a hydrophobic character and probably give higher pure water flux. 

Higher pure water flux is a desirable characteristic; however, this behavior probably 

limits the occurrence of NEPs adsorption. 

 

 

The efficiency of the fabricated EFMs was evaluated through pure water flux 

and NEPs adsorption measurement. The pure water flux was measured by using one, 

three, five and eight layers of EFMs through the filtration process. Then, the fabricated 

one, three, five and eight layers of Ny EFM was evaluated through the adsorption of 

BPA, ACTP, SMX and IBP in UPW with a concentration of 5 ppm by using a 

permeation cell. In order to improve the pure water flux, one layer of PSf or PSty EFM 

was composited with 5 layers of Ny EFM. Furthermore, the composite of 5 layers of 

Ny + 1 layer of PSf (Ny+PSf) and 5 layers of Ny + 1 layer of PSty (Ny+PSty) EFMs 

were proceeded for BPA adsorption and undergone membrane regeneration and 

reusability with three cycles of adsorption. Following that, the composite of Ny+PSf 

EFM was applied for BPA adsorption in tap water. The sample solution was analysed 

by using HPLC.  
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 1.5 Significance of Study  

 

 

The development of Ny, PSf and PSty EFMs, which have the capability to 

remove NEPs, are proposed as a new technology of advanced water treatment process 

in removing the contaminants from drinking water samples. The introducing of this 

new technology will yield high removal of NEPs as well as high water flux at low 

pressure. This is crucial as the presence of NEPs in surface water, WWTP effluent, 

and drinking water have been extensively reported in Malaysia. Therefore, the 

implementation of effective technology is projected to provide safe drinking water, 

particularly for Malaysia.  The success of this research will indirectly create a higher 

recognition of Malaysia's water research activities and institutes. 
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