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ABSTRACT

In the recent development of advanced nanoelectronic devices, strain application

on silicon Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) has been

identified as a key factor towards the improvement of device performance. Strained-

silicon is preferred due to less impact of the short channel effects, enhanced the carrier

mobility and lower the threshold voltage . Besides, strained-silicon can be applied to the

non-planar multi-gate structures such as Gate All Around (GAA) MOSFET. Charge-

based modelling (Qm) technique is widely been used for unstrained GAA MOSFET.

However, in this research work, the approach is exercised for strained-silicon GAA

MOSFET and subsequently to characterise its electrical behaviour in long and short

channel devices. The model is solved explicitly using a smoothing function to avoid

the convergence issue compared to the numerical model. For one-dimensional (1D)

strained silicon GAA MOSFET, the geometry scaling in the radial direction which

includes the radius and oxide layer thickness of the silicon layer can contribute to the

quantum effects. In order to improve the accuracy of the model, quantum capacitance

and threshold voltage were integrated into the long channel explicit model to facilitate

the quantum effect. For the short channel model, second-order physical effects were

included such as velocity saturation, channel length modulation and threshold voltage

roll-off to resemble the behaviour of the short channel device. Afterwards, the results

from the constructed models are compared against the Technology Computer Aided

Design (TCAD) simulation and published data. A good agreement was achieved

between model and simulated data indicates that the physical mechanisms of quantum

and short channel effects used in the model are valid. Besides, it is shown that the

existence of quantum starts to exhibit for radius and oxide layer less than 10 nm and 14

nm, respectively, regardless of the channel length being used in the device structure.

For device optimisation, gate stack with SiO2/H f O2 configuration is preferred due

to its smaller leakage current. The most optimised dimension is attained with the

gate length of 40 nm attributed to the enhanced overall electrical performances. The

extracted threshold voltage and on-state current obtained as 0.164 V and 8000 uA/um,

accordingly, where the values outperform the IRDS benchmarking for low power

application device.
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ABSTRAK

Pada era pembangunan peranti nanoelektronik padamasa kini, penegang silikon

semikonduktor oksida logam transistor kesan medan (MOSFET) telah dikenal pasti

sebagai penyumbang utama kepada peningkatan prestasi bagi peranti semikonduktor.

Teknologi ini telahmendapat sambutan dikalangan penggiat semikonduktor disebabkan

oleh pengurangan kesan pengecilan saiz saluran, peningkatan dalam kebolehgerakan

cas pembawa dan merendahkan voltan ambang . Disamping itu juga, penegang silikon

boleh digunakan untuk peranti semikonduktor berasaskan pelbagai dimensi get seperti

GAA MOSFET. Pemodelan berasaskan cas pembawa (Qm) telah digunakan secara

meluas untuk peranti get-silinder menyeluruh (GAA MOSFET) tanpa kesan penegang

silikon. Walaubagaimanapun, dalam kajian ini, teknik pemodelan tersebut digunakan

untuk peranti get-silinder menyeluruh dengan kesan penegang silikon (strained-silicon

GAA MOSFET) bertujuan untuk menganalisa parameter elektriknya termasuk peranti

saluran panjang dan pendek. Model tersebut boleh diselesaikan dengan mendapatkan

formula eksplisit menggunakan fungsi pelicinan (smoothing function) untuk mengelak

masalah penumpuan ketika simulasi berbanding model berangka yang lain. Untuk

peranti tegangan silikon 1D GAA MOSFET, penskalaan geometri pada arah radial

termasuk radius dan ketebalan lapisan penebat silikon bolehmenyumbang kepada kesan

kuantum. Untuk meningkatkan ketepatan model, model kapasitan dan voltan ambang

perlu mengambil kira kesan fizik kuantum. Untuk model peranti yang menggunakan

saluran pendek, kesan fizik seperti kesan kelajuan tepu, perubahan panjang saluran, dan

pengurangan voltan ambang turut dipertimbangkan kerana fenomena ini wujud dalam

saluran pendek. Seterusnya, perbandingan hasil simulasi diantara matematik model,

TCAD dan jurnal yang telah diterbitkan dilakukan untuk tujuan pembuktian model.

Melalui kaedah tersebut, simulasi untuk setiap data adalah selari . Disamping itu, kesan

quantummulai wujud apabila radius dan ketebalan penebat kurang daripada 10 nm dan

14 nm. Untuk mengoptimumkan prestasi peranti, penebat bertingkat menggunakan

kombinasi SiO2/H f O2 dipilih keranamampumengurangkan arus bocor. Dimensi yang

paling optimum diperoleh dengan menggunakan saluran panjang 40 nm disebabkan

oleh peningkatan keseluruhan prestasi elektrik. Nilai voltan ambang dan arus yang

diekstrak adalah 0.164 V dan 8000 uA/um, dimana nilai tersebutmengatasi nilai rujukan

IRDS bagi peranti yang menggunakan kuasa rendah.

vii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xx

LIST OF SYMBOLS xxii

LIST OF APPENDICES xxvi

CHAPTER 1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statement 6

1.2.1 Physical compact model of strained-

silicon GAA MOSFET 7

1.2.2 Physical mechanisms that will affect the

device performance 8

1.2.3 Alternative solutions to reduce leakage

current 9

1.3 Research Objectives 10

1.4 Research Scopes 11

1.5 Research Contributions 12

1.6 Thesis Organization 13

CHAPTER 2 LITERATURE REVIEW 15

2.1 Introduction 15

2.2 Issue in conventional MOSFETs 15

viii



2.2.1 Quantum Mechanical Effects 16

2.2.2 Short Channel Effects 17

2.3 Advanced MOSFETs and its alternatives 18

2.3.1 Advanced planar MOSFETs 19

2.4 Strained Silicon Technology 20

2.4.1 Formation of Uniaxial Strain Silicon 21

2.4.2 Formation of Biaxial Strained Silicon 23

2.4.2.1 Physic of Biaxial Tensile

Strain 25

2.4.2.2 Physic of Biaxial Compres-

sive Strain 26

2.4.3 Threshold Voltage Model for Strained

Silicon 28

2.4.3.1 Threshold Model 28

2.5 Evolution in Multi-gate MOSFETs 31

2.5.1 Evolution in Multi-gate MOSFETs 31

2.5.2 Strain Engineering in Multi-gate MOS-

FETs 34

2.5.3 Gate Stack in Multi-gate MOSFETs 36

2.6 Device Modeling 38

2.6.1 General Modeling Framework in MOS-

FETs 39

2.7 Modelling Framework for Multi-gate MOSFETs 43

2.7.1 Overview General Modelling Frame-

work for Multi-gate MOSFETs 43

2.7.2 Overview Modelling Framework for

Multi-gate MOSFET with Quantum

Effects 47

2.7.3 Overview Modelling Framework for

Multi-gate MOSFET with Short Chan-

nel Effects 51

2.8 GAA MOSFETs Core Model 54

2.8.1 Overview Modelling Framework for

GAA MOSFETs Core Models 55

ix



2.8.2 Overview Modelling Framework for

GAA MOSFETs Core Models with

Quantum Effects and Short Channel

Effects 63

2.9 Overview Modelling and Simulation works for

Strained-Silicon Multi-gate MOSFETs 67

2.10 Modelling Framework for Strained-Silicon GAA

MOSFETs 72

2.11 Summary 75

CHAPTER 3 RESEARCHMETHODOLOGY 77

3.1 Introduction 77

3.2 Research Activities 77

3.3 Device Compact Modelling Approach 80

3.3.1 Compact Model of Strained-Silicon

GAA MOSFET with Quantum Effects 80

3.3.2 Compact Model of Strained-Silicon

GAA MOSFET with Quantum and

Short Channel Effects 82

3.3.3 Optimisation of Short Channel Gate

Stack Strained-Silicon GAA MOSFET 84

3.4 Computational Simulation 87

3.5 Summary 88

CHAPTER 4 EXPLICIT CHARGE-BASED COMPACT MODEL-

ING FOR LONG CHANNEL STRAINED SILICON

GAA MOSFET WITH QUANTUM MECHANICAL

EFFECTS 89

4.1 Introduction 89

4.2 Charge-Based Compact Model of Long Channel

Strained Silicon GAA MOSFET 89

4.2.1 Implicit Continuos Charge-Based

Model 90

x



4.2.2 Core Model for Explicit Continu-

ous Charge-Based and Current-Voltage

Model for Strained-Silicon GAAMOS-

FET 94

4.2.3 Core Model for Explicit Continu-

ous Charge-Based and Current-Voltage

Model for Strained-Silicon GAAMOS-

FET with Quantum Mechanical Effects 97

4.2.4 Characterisation of Long Channel

Strained-Silicon GAAMOSFET Based

on Inversion Charge, Centroid Charge

and Current-Voltage 99

4.3 Summary 121

CHAPTER 5 EXPLICIT CHARGE-BASED COMPACT MODEL-

INGFORSTRAINEDSILICONGAAMOSFETWITH

SHORT CHANNEL EFFECTS 123

5.1 Introduction 123

5.2 Charge-BasedCompactModel of Strained Silicon

GAA MOSFET with Short Channel Effects 124

5.2.1 Explicit Continuous Charge-Based and

Current-Voltage Model for Strained

Silicon GAA MOSFET with quantum

and short channel effects 124

5.2.2 Characterisation of Short Channel

Strained Silicon GAA MOSFET based

on Inversion Charge and Current-

Voltage Curves 127

5.2.3 Short Channel Gate-Stack Strained

Silicon GAA MOSFET 136

5.2.3.1 Effective Oxide Thickness

(EOT) 136

xi



5.2.3.2 Optimisation of Gate-Stack

Strained Silicon GAA MOS-

FET 137

5.2.3.3 Device Benchmarking 141

5.3 Summary 145

CHAPTER 6 CONCLUSION 147

6.1 Introduction 147

6.2 Research Outcomes 147

6.2.1 Compact Model of Long Channel

Strained-Silicon GAA MOSFET 147

6.2.2 Compact Model of Short Channel

Strained-Silicon GAA MOSFET 149

6.2.3 Optimisation of Gate Stack Short Chan-

nel Strained-Silicon GAAMOSFET for

Low Power Application 149

6.3 Future Work 150

REFERENCES 153

xii



LIST OF TABLES

TABLE NO. TITLE PAGE

Table 1.1 List of emerging devices. 3

Table 1.2 Difficult challenges and potential solutions highlighted by

focus team of More Moore . 4

Table 1.3 Material for transistor scaling and integration by focus team

of Emerging Research Material. 5

Table 2.1 Alternatives device for advanced MOSFET. 18

Table 2.2 Natural length in device with different gate structures. 34

Table 2.3 MOSFET models available in circuit simulators . 40

Table 2.4 Summary of the modelling framework for Multi-gate

MOSFETs. 45

Table 2.5 Summary of the modelling framework for Multi-gate

MOSFETs.(Continue) 46

Table 2.6 Summary of the modelling framework for Multi-gate

MOSFETs with quantum effects. 49

Table 2.7 Summary of the modelling framework for Multi-gate

MOSFETs with quantum effects.(continue) 50

Table 2.8 Summary of the modelling framework for Multi-gate

MOSFETs with short channel effects. 52

Table 2.9 Summary of the modelling framework for Multi-gate

MOSFETs with short channel effects.(continue) 53

Table 2.10 Summary of the Modelling Framework for GAA MOSFET

core models . 61

Table 2.11 Summary of the Modelling Framework for GAA MOSFET

core models .(continue) 62

Table 2.12 Summary of the Modelling Framework for GAA MOSFET

core models .(continue) 63

Table 2.13 Summary of the Modelling Framework for GAA MOSFETs

with quantum and short channel effects . 66

xiii



Table 2.14 Summary of the Modelling Framework for GAA MOSFETs

with quantum and short channel effects .(continue) 67

Table 2.15 Lists of various works done related to strained-silicon

multi-gate structures through the modelling and simulation

approach. 70

Table 2.16 Lists of various works done related to strained-silicon

multi-gate structures through the modelling and simulation

approach.(continue) 71

Table 2.17 Lists of various works done related to Strained-Silicon GAA

MOSFETs through the modelling approach. 74

Table 3.1 List of different high- materials with its physical parameters. 87

Table 4.1 Parameters range used in the analysis. 101

Table 4.2 Range of parameters used in this computation. 102

Table 4.3 Parameters used in this work. 120

Table 5.1 Parameters used in the drain current model of strained-silicon

GAA MOSFET 130

Table 5.2 Range of parameters used in the simulation work of the short

channel strained-Silicon GAA MOSFET. 131

Table 5.3 Device Performance of strained Silicon SG MOSFET based

on GS configuration 142

Table 5.4 Comparison of electrical performance of strained SG

MOSFET with different GS 142

Table 5.5 Comparison in electrical performance between optimised

device and published work 144

xiv



LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1 Transistor scaling based on Moore’s Law prediction. 1

Figure 1.2 (a) The new paradigm of the electronic industry based on

emerging devices. (b) Application of emerging device at

all levels of electronic systems addressed by focus teams of

Beyond-CMOS. 3

Figure 2.1 Schematic diagram of (a) discrete energy spectrum due to

energy quantisation (b) Peak carrier distribution for both

normal and quantum effect conditions. 17

Figure 2.2 Graphical trend in advanced planar MOSFETs. 20

Figure 2.3 Mechanisms of induced strain in MOSFET. 21

Figure 2.4 Direction of forces in (a) Uniaxial strain (b) Biaxial strain on

crystal lattice atom. 21

Figure 2.5 Local strain (a) Epitaxial growth based on SiGe (b) Epitaxial

growth based on SiC (c) CESL . 22

Figure 2.6 Types of biaxial strain (a) Tensile strain (type II) (b)

Compressive strain (type I). 24

Figure 2.7 Formation of Biaxial Strain MOSFET (type II) during (a)

Before etching of layer and (b) After etching of (virtual

substrate) layer beneath the Silicon channel. 24

Figure 2.8 Schematic diagram of tensile strain for (a) energy splitting in

the conduction band and (b) silicon conduction band valley in

k space. 25

Figure 2.9 Schematic diagram of valence band splitting for (a) unstrained

and (b) tensile strained Silicon on relaxed Si1−xGex . 26

Figure 2.10 Schematic diagram of compressive strain for (a) energy

splitting in the conduction band and (b) silicon conduction

band valley in space . 27

xv



Figure 2.11 Schematic diagram of valence band splitting for (a) unstrained

and (b) compressive strained Si1−xGex on relaxed Silicon

[101]. 28

Figure 2.12 Long channel of strained Silicon MOSFET 29

Figure 2.13 Different gate structures of MOSFET:(a) Single gate (b)

Double gate (c)Triple gate (d) Gate All Around (GAA). 33

Figure 2.14 Strain engineering in multi-gate MOSFETs using (a) CESL

on Double Gate FinFET (b) Biaxial ultra-thin MOSFET and

uniaxial Tri-gate MOSFET (c) Strained Silicon Nanowire

(SSOI) . 36

Figure 2.15 Variation of Gate Stack in Multiple-gate MOSFETs for (a)

Tri-gate Strained SON (b) Triple-material Gate Stack Gate

All-Around MOSFET (c) Gate Stack FinFET (d) Gate Stack

Double Gate MOSFET . 38

Figure 2.16 Framework of Compact models with its solutions. 42

Figure 2.17 Schematic diagram for (a)Three dimensional (3-D) ofGateAll

AroundMOSFET(GAA) (b) Cross section ofGateAll Around

MOSFET (c) Charge distribution under quantum effect in

GAA MOSFET . 48

Figure 2.18 Schematic diagram for (a) 3-D GAA MOSFET and (b) Cross

section of GAA MOSFET along the channel. 55

Figure 2.19 Flowchart for development of Compact Model GAA

MOSFETs. 60

Figure 3.1 ResearchMethodology flowchart for StrainedGAAMOSFET. 79

Figure 3.2 Calibration of normalized electron density along the radius of

the silicon section of strained-silicon GAAMOSFET between

SP model against BQP model at x = 0, with R = 7.5 nm,

tox = 1.0 nm, and Na = 2e17 cm−3 for different gate voltages. 81

Figure 3.3 Device Modelling flowchart for long channel Strained-Silicon

GAA MOSFET with Quantum Effects. 82

Figure 3.4 Device Modelling Flowchart for short channel Strained-

Silicon GAA MOSFET with quantum and short channel

effects. 84

xvi



Figure 3.5 Device Modelling flowchart for Compact Modeling of short

channel Gate Stack Strained-Silicon GAA MOSFET with

quantum and short channel effects. 86

Figure 3.6 Shematic diagram of (a) Strained-Silicon GAA MOSFET

with its cross section (b) Gate stack Strained-Silicon GAA

MOSFET with its cross section. 87

Figure 4.1 Schematic diagram for N-type of strained GAA MOSFET

with its axis (r, y) which represent the vertical and horizontal

directions of the channel. 91

Figure 4.2 Normalised electron density along the radius of the silicon

section of strained silicon nanowire at x = 0, with R = 7.5

nm, tox = 1.0 nm, and Na = 2 × 1017 cm−3 for different gate

voltages. 100

Figure 4.3 Comparison between implicit model, published work [206]

and explicit model (proposed work) of (a) Qin_ss −Vgs and (b)

Ids − Vgs . 103

Figure 4.4 Comparison of Ids − Vgs using Schrodinger-Poisson (SP) and

Bohr Quantum Potential (BQP) models for (a) different radius

(b) different strain level . 104

Figure 4.5 Comparison between a classical and quantum model from the

simulator for (a) Ids − Vgs and (b) Qin − Vgs. 106

Figure 4.6 Comparison of quantum Ids − Vgs model with TCAD

simulation for different radius values at (a) x = 0 and (b)

x = 0.3. 108

Figure 4.7 Comparison of quantum Ids − Vgs model against TCAD

simulation with respect to strain levels. 109

Figure 4.8 Comparison of quantum Ids − Vgs model with ATLAS

simulation with respect to different doping levels for (a) x=0

and (b) x=0.3 111

Figure 4.9 Comparison of quantum Ids − Vgs model against TCAD

simulation for different oxide thickness. 112

Figure 4.10 Comparison of quantum Qin_ss −Vgs with ATLAS simulation

for different strain levels. 113

xvii



Figure 4.11 Comparison of quantum Qin_ss −Vgs with ATLAS simulation

for different radius and strain levels. 114

Figure 4.12 Comparison of quantum Qin_ss −Vgs with ATLAS simulation

for different oxide thickness using x = 0.3. 115

Figure 4.13 Comparison of variation of centroid charge (z) versus Qin_ss

with ATLAS simulation for different doping levels. 116

Figure 4.14 Comparison of variation of centroid charge (z) versus Qin_ss

with ATLAS simulation for different radius of the channel at

Na = 1 × 1015cm−3. 117

Figure 4.15 Comparison of variation of centroid charge (z) versus Qin_ss

with ATLAS simulation for different strain level at R = 7 nm 118

Figure 4.16 The variation of surface potential against the gate voltage for

different (a) Strain level (b) Radius of channel (R) (c) Oxide

thickness (tox) (d) Carrier concentration (Na) . 119

Figure 4.17 Comparison between corrected quantum model and experi-

mental data. 121

Figure 5.1 Current-voltage of strained GAA MOSFET with and without

velocity saturation model for different Ge(x) fraction at (a)

x = 0 and (b) x = 0.2 129

Figure 5.2 Comparison betweenmodelled and simulated data for (a) Ids−

Vgs in linear and (b) Ids − Vd in log scale with R = 7.5 nm,

tox = 1 nm and Lg = 60 nm. 132

Figure 5.3 Comparison betweenmodelled and simulated data for Ids−Vgs

curve at linear and logarithmic scaleswith different gate length

at Vds = 1.0 V. 134

Figure 5.4 Comparison betweenmodelled and simulated data for Ids−Vds

curves with different gate voltages. 135

Figure 5.5 Comparison betweenmodelled and simulated data for Ids−Vgs

curves at linear and logarithmic scales for a device with Lg =

40 nm and different gate dielectric at Vds = 1.0 V. 135

Figure 5.6 Comparison between modelled and simulation data for Ids −

Vgs curve at logarithmic scale using gate stack of SiO2 and

H f O2 with EOT = 3 nm at Vds = 1V. 137

xviii



Figure 5.7 The effect of gate stack ( GS) on off-state current (Io f f ) and

on state current (Ion). 139

Figure 5.8 The effect of gate stack (GS) on threshold voltage (Vth) . 140

Figure 5.9 The effect of GS on Subthreshold Swing (SS). 141

xix



LIST OF ABBREVIATIONS

CMOS – Complementary Metal-Oxide-Semiconductor

GAA – Gate-All-Around

GAA MOSFET– Gate-All-Around Metal-Oxide-Semiconductor field-effect

transistor

MOSFET – Metal-Oxide-Semiconductor field-effect transistor

IRDS – International Roadmap of Devices and Systems

ERM – Emerging Research Materials

ITRS – International Technology Roadmap for Semiconductors

MATLAB – Matrix Laboratory

NTRS – National Technology Roadmap for Semiconductors

TB – Tight Binding

SS – Subthreshold Slope

3D – Three Dimensional

2D – Two Dimensional

1D – One Dimensional

BSIM – Berkeley Short-Channel IGFET Model

CBM – Charge Balance Model

CLM – Channel Length Modulation

DIBL – Drain Induced Barrier Lowering

EOT – Effective Oxide Thickness

FD – Fully-depleted

GS – Gate stack

GCA – Gradual Channel Approximation

xx



TCAD – Technology Computer Aided Design

BQP – Bohm Quantum Potential

SRH – Shockley Read Hall

SCE – Short Channel Effect

High-k – Dielectric with high value of k

IoT – Internet of Thing

CESL – Contact etch stop linear

SOI – Silicon on Insulator

SSOI – Strained-Silicon on Insulator

HH – Heavy hole

LH – Light hole

SO – Split off

tri-gate – Triple gates

FinFET – Fin Field Effect Transistor

HiSIM – Hiroshima-University STARC IGFET Model

MM 11 – MOS Model 11

SP – Surface Potential

ACM – Advanced Compact Models

EKV – Enz-krummenacher-Vittoz Model

BSIM – Berkeley Short-channel IGFET Model

IGFET – Independent Gate Field Effect Transistor

EOT – Effective Oxide Thickness

CNT – Carbon Nanotube

SRAM – Static Random Access Memory

–

xxi

comsol-01
Text Box




LIST OF SYMBOLS

Lg – Gate length

4Lg – Variation of channel length due to channel length modulation

Io f f – Off-state current

Ion – On-state current

Vth – Threshold Voltage

vth – Termal Voltage

vsat – Velocity saturation

Vth_long – Threshold Voltage for long channel

φs – Surface Potential of silicon

Vox – Voltage across oxide layer

Vf b – Flat-band Voltage

(φs)s−Si – Surface Potential of strained-silicon(
Vf b

)
s−Si – Flat-band Voltage of strained-silicon

ni – Instrinsic carrier

ni
Si1−xGex – Instrinsic carrier in SiGe region

ni
strained−Si – Instrinsic carrier in Strained-Silicon region

∆Ec – Conduction band shift

Na – Acceptor doping

Nd – Donour doping

∆Eg – Energy band shift

∆Vf b – Flat-band shift

φSi – Workfunction for Silicon

φm – Workfunction for Gate

xxii



χSi – Electron Affinity of Silicon

q – Electronic charge

λc – Natural length

λa – Velocity overshoot

lc – Reference length

tox – Oxide thickness

thigh−k – Oxide thickness of high-k material

tsi – Body thickness of the silicon

R – Radius

ax – Lattice constant in horizontal direction

ay – Lattice constant in vertical direction

x – Germanium fraction

42 – Two-fold degenerate

44 – Four-fold degenerate

k – Wave factor

χ – Electron Affinity

Si3N4 – Silicon Nitride

H f O2 – Hafnium Oxide

Al2O3 – Aluminium Oxide

Si – Silicon

SiO2 – Silicon-oxide

Ids-Vds – Drain Current versus Drain Voltage

Ids- Vgs – Drain Current versus Gate Voltage

Vgs – Gate source voltage

εSiO2 – Permittivity of oxide layer

εhigh−k – Permittivity of high-k

xxiii



εsi – Permittivity of silicon

Qi – Inversion charge

Qd – Depletion charge

Q f – Fixed oxide charge

Qis – Inversion charge at source end

Qid – Inversion charge at drain end

∆Vth – Threshold Voltage shift

∆Vth_sc – Threshold Voltage shift with short channel effect

Vch – Fermi potential along the channel

µsc – Mobility of the carrier with short channel effect

µe f f – Effective mobility of the carrier

µ – Mobility of the carrier

Wd – Width of the channel

∆z – The changes of centroid position

z – The position of centroid position

Cox – Gate capacitance

Coxe f f – Effective gate capacitance

Qin_ss – Inversion charge of strained-silicon

Qinsc_ss – Inversion charge of strained-silicon with short channel effect

Vth_ss – Threshold voltage of strained-silicon

Vthq_ss – Threshold voltage of strained-silicon with quantum effect

Vthsc_ss – Threshold voltage of strained-silicon with short channel effect

α – Alpha

γ – Gamma

h – Planck’s constant

n – carrier density

xxiv



M−1 – Inverse effective mass

µn0 – Electron low field mobilities

E – Electric field

BET AN – Mobility

νsatn – Velocity saturation of electron

Eg – Energy bandgap

φb – Barrier height

SiGe – Silicon Germanium

SiC – Silicon Carbon

Ge – Germanium

InGaAs – Indium Gallium Arsenide

I I I − V – Three-five material

Cu – Copper

Vdd – Power supply

–

xxv

comsol-01
Highlight

comsol-01
Text Box




LIST OF APPENDICES

APPENDIX TITLE PAGE

A Publication List 180

xxvi

Razali
Textbox
 180

Razali
Textbox
179



CHAPTER 1

INTRODUCTION

1.1 Research Background

For decades, the Metal-Oxide-Semiconductor Field Effect Transistor

(MOSFET) has become the core building block for almost all computing devices.

A tremendous demand in electronic appliances due to massive economic growth

has enforced the semiconductor player to provide a high-quality product with higher

processing speed, smaller size and lower in power consumption of the MOSFETs.

This remarkable evolution of semiconductor technology is motivated by Moore’s Law

and coupled with Dennard Law for both device and power consumption scaling [1-

2]. According to Moore’s Law which introduced by Gordon Moore, the number of

transistors on a chip will be doubled for every two years when the gate length reduced

by a factor of 0.7 as shown in Figure 1.1.

Figure 1.1 Transistor scaling based on Moore’s Law prediction.

1



However, as the channel length of the MOSFET reaches nanometer scale, the

scaling constraint such as higher leakage current starts to limit the device scaling further.

Thus, a standard semiconductor roadmapping provider such as IRDS is introduced to

look for more alternative and addressed possible issue occurred in the near future.

Previously, NTRS and ITRS were the organisations that have been appointed to set

the roadmap of the transistors and the community members mostly semiconductor

expert, working closely with the semiconductor industries. Besides, the previous

roadmappings were merely focusing on the alternatives emerging device (Table1.1)

and improvement on the performance of the transistor but less attention is given on the

application. Therefore, some of the guidelines in IRDS are taken from ITRS and added

with some benchmark on the emerging architecture and systems which may relate to

the evolution of cloud storage, seamless interaction of big data and instant data [3].

Since IRDS is given responsibilities for providing guidelines and directions

to sustain the scaling technology, thus, the focus teams from IRDS community have

outlined challenges and potential solutions related to device and transistor-level into

several groups such as the More Moore, Beyond CMOS and Emerging Research

Materials. Figure 1.2(a) shows the paradigm of an electronics industry has started to

use emerging materials from device to architecture levels rather than the conventional

MOSFET, as reported in ITRS 2012. Moreover, these technology shift is driven

by the novel computing paradigms which require a system to operate with higher

performance and better efficiency as well as capable to integrate withmore functionality

to accommodate for a future era of computing application (big data, IoT, artificial

intelligence) as depicted in Figure 1.2(b).
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Figure 1.2 (a) The newparadigmof the electronic industry based on emerging devices.
(b) Application of emerging device at all levels of electronic systems addressed by focus
teams of Beyond-CMOS [4].

Table 1.1 List of emerging devices [5-7].

Advanced MOSFETs

Structure Vertical MOSFET, Double Gate, Double Gate, FinFET, Trigate,

Omega gate and Gate All Around (Silicon Nanowire).

Material Graphene, Carbon Nanotube(CNT), III-V material group and

Cadmium Arsenide.

Some of the challenges and hurdles for emerging and current applied device have

been addressed meticulously by a focus team of More Moore for further improvement

and prevention in the future. These challenges cover for both near-term and long-term

plans as listed in Table 1.2. Simultaneously, some potential solutions based on the issues

highlighted in Table 1.2 have been discussed further. These solutions are expected to

solve four targeted criteria: performance, power, area, and cost. For near-term solutions

that related to the evaluation of device performance, the gate drive loss due to power

supply scaling can be improved alternately by inducing strain to the channel, employed

stress boosters and high-k metal gate, lowering contact resistance through newmaterials

and wrap-around contact besides improving the electrostatics. Gate All Around (GAA)
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device can be used to control the electrostatic effectively and expected to be adopted into

the industry in 2021 [3] as being predicted in near term challenge. However, as the gate

length is scaled-down less than 10 nm, the parasitics resistance and capacitance will

be more dominant terms and caused the performance loss. This drawback is solved

by addressing the solutions into long term challenges using vertical GAA structure.

Besides, the substrate can be tailored using high-mobility materials such as Ge and

III-V. Power reduction in vertical GAA using lower Vdd operation can be attained using

highly-parallel 3D architectures. On the other hand, sequential integration of vertical

GAA would enable stacking of the device on top of each other to reduce area and cost

during the fabrication process. Based on challenges and advantages particularly related

to Silicon Nanowire or GAA MOSFETs highlighted in Table 1.2 and 1.3, there is a

necessity to further explore the capability and benefits for such devices. One of the

alternative is to study the behaviour of the device through a physical model.

Table 1.2 Difficult challenges and potential solutions highlighted by focus team of
More Moore [5-7].

Duration Scope of Scaling

Challenges

Potential Solutions

Near Term

(2017-2024)

Power scaling Improved device performance by

Parasitic scaling applying strain to channel; stress booster,

Cost reduction high-k metal gate, reduce contact

Integration enablement for

SRAM-cache applications

resistance through new material and

wrap-around contact, and improving

Interconnect scalability electrostatic with GAA architecture.

Long Term

(2025-2033)

Power scaling Applied stacking vertical GAA structure

Vertical Structure to compensate performance loses,

Thermal issue employed alternate high-mobility

Cost reduction with 3D

integration

substrate materials, and using parallel 3D

architecture.

Integration of non-Cu

metallization to replace

Cu
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Table 1.3 Material for transistor scaling and integration by focus team of Emerging
Research Material [5-7].

Application Potential

Emerging

Material

Potential Advantages

High mobility

semiconductor

InGaAs, InSb,

strained III-V on

silicon for

p-channel

High hole mobilities for complementary

MOSFETs.

n-channel Ge High electron mobilities for

complementary MOSFETs.

Co-integration of

III-V and Ge

High electron and hole mobility

High mobility

and steep

subthreshold

transistors

Si or Ge

nanowires

High gate control of leakage current,

possibly low surface scattering, and

promise for 3D monolithic integration.

III-V nanowires High electron mobility with high gate

control of leakage current. Promise for

3D monolithic integration.

Carbon

nanotubes [1–9]

High mobility with good channel control.

Other 2D

materials (MoS2,

WSe2,

germanene,

silicene, etc.)

High mobility, good channel control,

possibility of heterostructure and

tunneling devices

Ultra high-k gate

dielectric
TiO2 or SrTiO2 Improved transistor performance with

low gate leakage and improved energy

efficiency
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Relentless device scaling has contributed to the deterioration in on-state current

and the increment of leakage current due to the short channel effects and consequently, it

degrades the electrical performance of the device. Several high mobility materials such

as InGaAs, InSb, and strained III-V have been presented by a focus team of Emerging

ResearchMaterial in Table 1.3, which advantages to increase the drive current. Besides

that, performance loses due to device and power scaling also can be compensated with

the incorporation of strain in the silicon channel which classified under high mobility

material. Moreover, due to its benefits, abundant of strain application in the multi-gate

devices have been reported in the literature indicate that such devices have growing

interest among the researchers [8-11]. Since GAA structure acknowledges as a device

with good electrostatic control, strain incorporation in the channel can further improve

its electrical performance comprehensively such as on current (Ion), threshold (Vth),

subthreshold swing (SS) and drain induced barrier lowering (DIBL). The privilege of

GAA with a high mobility channel will increase the mobility of the device without

dependent much on the doping level and allowed further downscale the channel length

of the transistor [10-11]. Even though a heavily doped channel able to improve the

carrier mobility, but, it will cause an increment in leakage current and unacceptable for

certain applications [12]. Thus, the silicon channel of multigate-structures with high

mobility materials is good potential to be implemented as a future nanoscale device.

1.2 Problem Statement

Strain applications have received positive feedbacks after being implemented

into conventional MOSFET as a performance booster [13-15]. Due to the advantages

of the electrical performance on transistors as being reported in previous works, the

application has been extended to advanced MOSFET such as multi-gate device [16-

20]. GAA MOSFET is considered as the best structure among the multi-gate devices

due to its advantages which offers better electrostatic control and less short channel

effects. Moreover, the introduction of strain on GAA MOSFETs recognised as one of

the potential candidates in the application of transistors and believed to be a notable

contribution toward the future nanoscale device. Besides, it also has been addressed
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as part of the solution to overcome drive current degradation in the near term of IRDS

(More Moore).

Previous researches have revealed that strained-silicon GAA MOSFET

beneficial to be investigated due to its advantages which help to increase the mobility of

the carriers notably and exhibiting tunable threshold voltage for high-speed application

for MOSFETs [21-24]. Thus, fundamental and physical studies should be conducted

at the device level. The analysis needs to address the impact of strain on its electrical

performance such as threshold voltage and transfer characteristic (I-V). On the other

hand, the physical model for long channel and short channel for strained-silicon GAA

MOSFETs should be developed separately since the model involved with the different

physical mechanisms. Besides, the integration of the gate stack can assist in lowering

the leakage current effectively [25-28].

Therefore, to further investigate the advantages of this device, the research

work should concentrate on the methodology that can be used to access its electrical

properties. The literature reviews that highlighted in Chapter 2 (section 2.5.2) can serve

as a baseline in finding the strengths and constraints of the published work in which

may helps to identify the potential research gap that could be initiated in this work.

Based on the literature, there are several scopes of researches question in strained

GAA MOSFET yet to be revealed and uncertain in prior modelling work. These

limitations acknowledged as a critical problem that needs to be solved through this

work as summarised as follows:

1.2.1 Physical compact model of strained-silicon GAA MOSFET

There are several ways to examine and investigate the behaviour of a device

such as a numerical model and analytical model. However, the analytical model is

more favourable to be used by the industry due to its advantages such as shorter

execution time and easy to be implemented. The analytical model can be expressed

using a physical compact model and can be solved explicitly. In Gate All Around

(GAA) MOSFET, the explicit method is widely been used attributed by the simplicity
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of the model itself [23,47-49]. Nonetheless, for strained-silicon GAA MOSFET, there

are inadequate literature based on the compact model have been reported. Kumar et

al.,(2017) [23] and Sharma et al.,(2018) [40] have introduced the analytical model

for strained Silicon/Silicon-Germanium GAA MOSFET structure using 2D Poisson’s

model and subsequently obtain its transfer characteristic solution for the short channel

device. In these works, Silicon and SiGe are located at the outer and inner shell of

the channel, respectively. Nevertheless, the structure is not practical to be utilised in

a real-world as being reported by Hasmie et al.,(2008) [20] even though the model is

formulated for strained GAA based on charge model.

Likewise, Zhang et al.,(2016) [22] and Liu et al.,(2012) [21] have used the same

approach to model the strained GAAMOSFET but different device structure is applied

as compared to the one that has been adopted in [20], where the strain effect is induced

on the channel without the existence of the SiGe layer, and the channel is assumed in

the form of strained-silicon. Moreover, the model is solved numerically based on the

threshold voltage. Even though the device structure in [21,22] resemble with the one

that has been fabricated device by Hasmie et al.,(2008) [20] but the physical model

and analysis for strained GAA MOSFET still insufficient due to the complexity of the

numerical model if being utilised in circuit simulator and hence can discouraging the

technology transfer. Besides, there are fewer number of publication that addressed the

physical mechanism of strain effect using a charge-based model which is important for

circuit application.

1.2.2 Physical mechanisms that will affect the device performance

For a realistic compact model, the physical mechanism such as quantum effect

should be taken into account in the model regardless of modelling frameworks that

have been used to represent a MOSFET. Neglecting this effect may cause inaccuracy

in data characterisation for a particular case. In conventional MOSFET, the condition

for a quantisation effect to occur in the device when the doping channel more than

1x1018 cm−3 and oxide thickness scale down less than 2 nm [41-43]. When a transistor

encountered evolution from conventional to advancedMOSFET, the quantisation effect
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would persist but may change based on device geometries. Thus, for multi-gate

structures, the quantisation effect appears when the body thickness of the channel

less than 10 nm [23,44]. Moreover, this effect is likely to occur in both the long channel

and short channel devices [45-46].

Meanwhile, short channel effects are dominant in a short channel device due

to the influence of the horizontal electric field in comparison to the vertical field.

Generally, the velocity of the electron directly proportional to the strength of electric

fields. As the gate length gets narrower, this effect would be significant. Besides that,

other short channel effects need to be considered are the threshold roll-off, channel

length modulation and mobility degradation [48-49]. Venugopalan et al.,(2012) [46]

and Kumar et al.,(2017) have presented the modelling framework for long channel

devices for unstrained and strained Si/SiGe GAA MOSFET, respectively. In different

cases, the strained-silicon GAA model worked by Zhang et al.,(2016) and Liu et

al.,(2012) have neglected the quantum effects in their model which may misinterpret

the device operation and characterisation of electrical parameters such as threshold

voltage, capacitance and inversion charge which gives strong effect on device transfer

characteristic. Even though the model has considered the short channel effect, but the

physical mechanism is limited for the threshold roll-off. Other circumstances such as

velocity saturation, channel length modulation and mobility degradation [48-49] are

remarkably important which determine the accuracy of the device model.

1.2.3 Alternative solutions to reduce leakage current

GAA MOSFETs are recognised as an ideal nanoscale device due to its

outstanding electrical performance and received ample attention through numerous

publications. Inducing strain effect on the silicon channel of GAA structure can

enhance its electrical achievement further such as poses a higher driving current and

lower threshold voltage. Based on the previous works, as the strain effect increases at

a certain level of Ge fraction, it would reduce the operating voltage, DIBL and SS but

slightly increased the subthreshold leakage current [33]. Based on these findings, the

strain effect is beneficial in enhancing overall device performance except the leakage
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current. Since the increment in on-state current is higher compared to off-state current,

thus producing a higher current ratio. Based on this trend, leakage current increment

due to strain effect is a trade-off with the rise of on-state current. However, for the

sake of device reliability, gate stack (GS) insulator layer is introduced to scale down

the leakage current. According to researches related to the application of GS are

explained in Chapter 2 (refer section 2.5.3), it was found that leakage current and the

short channels are mitigated significantly [50-51]. There are abundant of investigations

pertaining to the impact of gate stack onmulti-gate structures that have been highlighted

in the publication. Most of the work concentrated on double-gate, trigate and GAA

MOSFET [50-54]. Moreover, for strain application, the existing works only limited to

the double gate and trigate structure [24,27-28,50,53-54]. However, the effect of gate

stack on strained-silicon GAA MOSFET is yet to be highlighted and uncertain. Thus,

it is crucial to perform the characterisation of the gate stack for such structure which

important in lowering the leakage current.

1.3 Research Objectives

The primary purposes of this research are to model and simulate the

characteristic of 1D of Strained-SiliconGAAMOSFETs for both long channel and short

channel devices. In conjunction with the shortcomings and research gaps addressed in

the previous section, the objectives are summarised as follow:

1. Compact model of long channel strained-silicon GAA MOSFET :-
(a) To explicitly solve the mobile charge density including the trap charge

and quantum effects for a wide range of body doping.

(b) To obtain continuous drain current expression.

(c) To study the impact of inversion charge and centroid charges based on

the radius, doping and strain levels.
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2. Compact model of short channel strained-silicon GAA MOSFET :-
(a) To obtain continuous drain current expression based on quantum and

short channel effects.

(b) To investigate the impact of a short channel on the transfer

characteristic of the device.

3. Characterisation of Gate Stack Strained Silicon GAA MOSFET :-
(a) To determine and optimise the best gate stack combination for

strained-silicon GAA MOSFET in lowering the leakage current and

short channel effects.

(b) To evaluate and benchmark the performance of the device with

published work.

1.4 Research Scopes

The scopes of this research are addressed as below:

1. Analytical Modelling for long channel model: It involves obtaining the explicit

solution of the mobile charge densities for the core model of strained-silicon

GAA MOSFET. Subsequently, the correction charge model based on quantum

effect is determined before solving the current continuity model. The condition

for the quantum effect is considered when the radius and oxide thickness of

GAA structure less than 10 nm and 14 nm, respectively.

2. Analytical Modelling for short channel model: The quantum and short channel

effects are incorporated into a long channel of current continuitymodel . Besides

that, the short channel effects include the velocity saturation, threshold roll-off,

channel length modulation and mobility degradation. The model is limited for

the gate length less than 100 nm.

3. Computational simulation: The mathematical derivations in the analytical

model are performed using Mathematica simulation tool and the analysis are

conducted through MATLAB. Meanwhile, the validity of the models is tested

by comparing them with published work and 3D device simulation. In the

TCAD tool, a model for the quantummodel is invoked using the Bohr Quantum

11



PotentialModel; meanwhile, for short channel device, velocity saturationmodel

is employed.

4. Simulation work: For gate stack optimisation of strained-silicon GAA

MOSFETs, a 3D device structure is used to compare with the analytical model

earlier is extended and incorporated with gate stack for further performance

improvement. Moreover, the quantum and velocity saturation models are

invoked to accommodate the circumstances of a short channel device. Variations

of gate stack combination using silicon nitride (Si3N4) , hafnium oxide (H f O2)

, and aluminium oxide (Al2O3) are tested and its final configuration is selected

in which giving the smallest leakage current and better electrical performance

such as SS, DIBL, Vth and current ratio.

1.5 Research Contributions

The significant contributions of this work are summarised as below:

1. Explicit and continuous compact model of long channel strained-silicon GAA

devices: The analytical model for long channel strained-silicon GAA is

formulated in the form of a charge-based model which simplified explicitly.

Afterwards, the correction on charge-basedmodel is performed to accommodate

for smaller radius and oxide thickness of the device. After solving the charge

model, the current continuity model is obtained for further analysis of the strain

effect on the GAA structure.

2. Explicit and continuous compact model of short channel strained-silicon GAA

devices: The model accomplished from the long channel device is then

extended to further characterise the short channel device. Several physical

mechanisms are used to represent such a device include the channel length

modulation, velocity saturation, threshold-roll off and mobility degradation.

These mechanisms are vital phenomena related to short channel effects. Based

on this model, the behaviour of short channel strained-silicon GAA MOSFET

is adequate to be used to analyse the transfer characteristic.
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3. Optimisation of gate stack strained-silicon GAA MOSFET for low power

application: 3D structure of strained-silicon GAA MOSFET is used to

validate the compact model earlier that has been integrated with the gate stack

configuration. Various high-k (Si3N4, H f O2, Al2O3) material are examined to

find the best combination of GS which gives the smallest leakage current and

yet better overall electrical performance. The optimised device can serve for a

low power application since it is used for low operating voltage and a higher

driving current.

1.6 Thesis Organization

Chapter 1 provides the fundamental knowledge for this research. A

comprehensive background of the roadmapping in the semiconductor field is

highlighted with the challenges and potential solutions that can serve as a baseline

to manage the research directions in nanoscale devices. After identifying the strength

and weakness of previous works through the critically reviewing process, the problem

statements related to the research direction are deduced. In conjunction with the

problem statements, research objectives are identified. Subsequently, the scope of this

research work is discussed further based on the existing literature and the available

tools. Finally, the contributions of this work are explained briefly.

In Chapter 2, the literature reviews that related to fundamental of strain

application on the transistors are discussed meticulously. Moreover, the strain

evolutions from conventional to advanced MOSFETs are reviewed extensively to

understand the concept and the techniques used to induce strain effect in different

device structures and technology. On the other hand, the modelling framework also

being highlighted to identify the appropriate model in describing the strain effect in

GAA structure. Besides, the incorporation of the gate stack in a multi-gate device also

being addressed concisely.

Chapter 3 elaborates the research method used to conduct this research work

using general research flow and modelling flowchart in accomplishing the objectives.
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In this section, the modelling frameworks used in Chapter 4 and Chapter 5 is discussed

concisely. Other than that, the model used in the TCAD tool also emphasised.

Chapter 4 comprises the modelling framework for long channel strained GAA

MOSFET. The model is formulated in term of the charge-based model and accounts

the quantum effect due to aggressive scaling in gate oxide thickness and radius of the

channel. Besides, the analysis discussed in this chapter has investigated the influence of

strain on surface potential, inversion charge, centroid charge and transfer characteristic

of the device.

Chapter 5 presents the compact model for the short channel strained-silicon

GAA MOSFET. The model has incorporated the quantum and short channel effects to

accommodate the physical mechanism as a short channel device. In this section, the

analysis covers the impact of a short channel on the transfer characteristic of the device.

Meanwhile, further investigation on the 3D structure of gate stack strained-silicon GAA

MOSFET is performed by varying the thickness of the gate stack layer with various of

the high-k material based on effective oxide thickness (EOT). The most optimised EOT

is chosen in which giving the lowest leakage current and better electrical properties.

Chapter 6 summarised the essential findings and the contributions based on

objectives discussed in Chapter 1. Besides, the future works are recommended to

improve and ensure the continuation of the proposed device beneficial for compact

model users which coming among the researchers and industries and afterwards might

be used as a potential candidate in future CMOS application.
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