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ABSTRACT 

Every country needs a high-speed Unmanned Air Vehicle (UAV) to monitor territory 
especially their ocean. One of the best UAV that can perform this mission is Unmanned 
Combat Air Vehicle (UCAV). The main advantage of the UCAV is a kind of delta-shaped 
drone that can fly at high speed and greater altitude. For a high-speed plane, there are always 
issues in the take-off and landing segments, as it need a longer runway. Thus, the aerodynamic 
performances at these conditions were always in transitional and not stable when it 
manoeuvres. North Atlantic Treaty Organisation (NATO) has initiated a task group of AVT-
183 to perform the aerodynamic analysis on UCAV related profile recently. The flow above 
of Stability And Control CONfiguration (SACCON) wing is very complicated and a simplified 
model called Diamond wing was introduced for the aerodynamic studies. Diamond wing is 
also a kind of delta-shaped wing where at certain angle of attack, the primary vortex and other 
separation occur on the wing. The outcomes from the AVT-183 group were the flow on the 
upper surface of the Diamond flow field such as the vortical structures interaction, formation 
and progression are complicated, disorganised and unknown. Although many computer fluid 
dynamic researches have been conducted during the campaign, the data from the experiment 
or wind tunnel testing to validate the simulation is very limited especially in the inboard region. 
Thus, the numerical prediction of aerodynamic performance for the wing is not well predicted. 
The aim of this study was to provide the experimental data on the Diamond wing that can 
improve the understanding of the aerodynamic characteristics and the flow topology above the 
Diamond wing. This study assessed the formation, progression and interaction of vortices 
above the Diamond wing. A half-span NATO configuration Diamond-shaped wing model was 
designed and manufactured. The model was then tested in UTM – Aerolab subsonic wind 
tunnel at the Reynolds number of 1×106, 2×106 and 3×106, respectively. Four measurement 
techniques were employed on the wing, i.e., steady/unsteady force measurement, flow 
visualization, surface pressure measurement and finally the off-surface pressure study. The 
data obtained from the Diamond wing were compared with another delta-shaped NATO 
standard profile called VFE-2 wing. A model of VFE-2 wing was also fabricated in UTM, and 
several measurement techniques such as flow visualization and pressure measurements were 
performed on this wing. The main flow characteristics above the Diamond and VFE-2 wing 
were the primary vortex that occurred in the leading edge of the wing. The results from the 
tuft technique carried out in UTM has identified several relationships between the attached 
flow, primary and inner vortices. The results obtained have shown that lift and drag (L/D) ratio 
for the Diamond in the subsonic region has not been affected by the Reynolds number 
variation. The optimum lift is produced at angle of attack ranges between 3° < α < 5° where 
the lift is 8 times higher than the drag. The lift for Diamond wing has increased by 9% when 
compared to the VFE-2 wing in the region where inner vortex was developed. However, the 
drag for the Diamond wing increased by up to 15% when compared to VFE-2 wing at the 
angle of attack 12° and above. The onset of the primary vortex for Diamond wing occurred at 
20% chord-wise position earlier compared to VFE-2 wing. Interestingly, further inboard of the 
wing, several other vortices have been found. The number of vortices is depending on the flow 
conditions and these vortices have the same attributes as the inner vortex. This new discovery 
vortex is termed as multi - inner vortex. For the VFE-2 wing, there is only one single inner 
vortex developed inboard of the wing. It happened in the region 30% inboard of the wing span. 
The inner vortex has low intensity, which has about 85% pressure difference when compared 
to the corresponding primary vortex. This thesis provides a complete experimental data on 
flow above the Diamond wing. It also provided a better insight on the flow topology above the 
Diamond wing. 
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ABSTRAK 

Setiap negara memerlukan sebuah kenderaan udara tanpa pemandu (UAV) pantas bagi 
tujuan kawalan sempadan terutamanya di kawasan perairan negara. UAV yang paling sesuai untuk 
tujuan ini adalah kenderaan udara tempur tanpa pemandu (UCAV). Kelebihan utama yang ada 
pada UCAV ini adalah dari sifat bentuk deltanya yang membolehkannya terbang pada kelajuan 
dan altitude tinggi. Bagi sesebuah pesawat pantas, masalah yang sering dihadapi adalah pada ketika 
ruas berlepas dan mendarat, kerana ianya memerlukan landasan yang cukup panjang. Oleh itu, 
prestasi aerodinamik pada keadaan tersebut berubah-ubah dan tidak stabil ketika olahgerak. Ini 
telah mendorong pihak Pertubuhan Perjanjian Atlantik Utara (NATO) untuk menubuhkan sebuah 
kumpulan dikenali sebagai AVT-183 bagi menjalankan analisis aerodinamik ke atas susuk sayap 
berkaitan. Aliran udara yang berlaku di atas sayap Konfigurasi Kestabilan Dan Kawalan 
(SACCON) sangat rumit, maka sebuah model sayap dipermudah dinamakan Berlian diperkenalkan 
bagi tujuan kajian aerodinamik ini. Sayap Berlian juga merupakan sejenis sayap berbentuk delta, 
yang mana pada sudut serang tertentu, vorteks utama dan lain-lain aliran terpisah berlaku di 
atasnya. Hasil kajian daripada kumpulan AVT-183 ini mendapati bahawa aliran udara pada 
permukaan atas Berlian seperti interaksi, pembentukan dan perkembangan struktur pusaran adalah 
rumit, tidak teratur dan tidak diketahui. Walaupun banyak penyelidikan komputasi dinamik 
bendalir telah dilakukan selama kempen berlangsung, data dari eksperimen atau pengujian 
terowong angin untuk pengesahan sangat terhad terutamanya pada kawasan dalam sayap. Hal ini 
menyebabkan ramalan berangka prestasi aerodinamik bagi sayap berkenaan tidak diramal dengan 
tepat. Tujuan penyelidikan ini dijalankan adalah untuk menyediakan data eksperimen sayap 
Berlian supaya pemahaman berkenaan topologi aliran dan ciri-ciri aerodinamik dapat ditingkatkan. 
Pembentukan, perkembangan dan interaksi pusaran di atas sayap Berlian telah diselidiki. Sebuah 
model sayap separuh rentang berbentuk berlian dan mengikut konfigurasi NATO direka dan 
dibina. Model in kemudiannya diuji di terowong angin subbunyi Aerolab – UTM pada setiap 
nombor Reynolds 1×106, 2×106 dan 3×106. Empat teknik pengukuran digunakan, iaitu pengukuran 
bebanan secara stabil/tidak stabil, gambaran aliran, pengukuran tekanan permukaan dan kajian 
tekanan di atas permukaan sayap. Data yang diperoleh daripada sayap Berlian dibandingkan 
dengan satu lagi susuk delta yang dirujuk sebagai model piawai oleh NATO iaitu sayap VFE-2. 
Sebuah model sayap VFE-2 juga dibina di UTM, dan beberapa teknik pengukuran seperti 
gambaran aliran dan pengukuran tekanan juga dilakukan ke atas sayap ini. Ciri utama yang terjadi 
di dalam aliran sayap Berlian dan VFE-2 adalah berlakunya vorteks utama di pinggir depan sayap. 
Hasil daripada teknik tuft yang dijalankan di UTM, beberapa hubungan di antara aliran melekat, 
vorteks utama dan vorteks dalam telah dikenalpasti. Keputusan eksperimen yang diperolehi 
menunjukkan bahawa nisbah daya angkat berbanding daya seret (L/D) bagi sayap Berlian tidak 
dipengaruhi oleh perubahan nombor Reynolds. Daya angkat yang optimum  berlaku pada julat 
sudut serang 3° < α < 5°, yang mana daya angkat adalah 8 kali lebih tinggi daripada daya seret. 
Daya angkat untuk sayap Berlian meningkat sebanyak 9% jika dibandingkan dengan sayap VFE-
2 untuk situasi yang mana vorteks dalaman terbentuk. Daya seretan untuk sayap Berlian meningkat 
sehingga 15% berbanding dengan sayap VFE-2 bermula pada sudut serang 12° dan ke atas. Titik 
mula vorteks utama berlaku pada kedudukan 20% mengikut-perentas lebih awal untuk sayap 
Berlian berbanding sayap VFE-2. Menariknya dalam kajian ini, beberapa lagi vorteks dalaman 
terbentuk di bahagian tengah sayap Berlian berbanding cuma satu sahaja vortex dalaman terbentuk 
untuk kes sayap VFE-2. Bilangan vorteks ini bergantung kepada keadaan aliran udara dan vorteks 
ini mempunyai sifat yang sama seperti vorteks dalaman. Penemuan vorteks baru ini diistilahkan 
sebagai vorteks dalam-berbilang. Ia terletak dalam lingkungan 30% di bahagian dalam sayap 
tersebut. Vorteks dalaman ini mempunyai keamatan yang rendah dengan mempunyai kira-kira 
85% beza tekanan jika dibandingkan dengan vorteks utama. Tesis ini telah menyediakan data 
eksperimen yang lengkap mengenai aliran di atas sayap Berlian. Ianya juga dapat memberikan 
gambaran yang lebih baik mengenai topologi aliran di atas sayap Berlian.   
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INTRODUCTION 

 Introduction 

Delta wing is a triangle planform when it views from the top projection. The 

words ‘delta’ is named after it similarity shape with the Greek uppercase letter delta 

(Δ). When the air flowed through a delta wing at certain angle of attack and speeds, 

the flow will separate and generate a pair of vortex on the upper surface of the wing. 

The generated vortices induce suction forces that can increase the wing lift coefficient 

(Polhamus, 1966). Vortex flow phenomena above delta wing is very complicated, 

unresolved and has been studied for many years.  

The aerodynamic characteristics of the sharp-edged delta wing have been 

studied comprehensively in many years. The main flow structure observed on the 

upper surface is the leading edge vortex. At certain angle of attack, the separation 

occurs at the leading edge and its rolls up to form leading edge or primary vortex as 

described by Hummel (1979). This vortex travel downstream and has increased 

negative suction peak on the upper, this situation will increase the lift coefficient.  

There are many other flow phenomena for sharp-edged delta wing such as 

vortex breakdown, vortex interaction and shock vortex interaction have been 

documented by Lambourne & Bryer (1961), Mitchell (2003), Hall (1998), Schiavetta 

et al. (2009) and Miller & Wood (1985) works. However, the flow topology above the 

wing will change if the leading is blunt.  

In practice, blunt leading edge profile is more favourable in aircraft design 

especially in UAV and UCAV application. The primary vortex for the blunt-edged 

wing behaves differently compared to the sharp wing. The primary vortex developed 

at certain chordwise from the wing apex, Luckring (2004; 2010; 2019). The bluntness 
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has caused the vortex becomes smaller, weaker and it located further outboard of the 

wing.  

Throughout the past decades, delta wing has found to be a profile for high 

manoeuvre combat aircraft including UAV (Unmanned Air Vehicle) and UCAV 

(Unmanned Combat Air Vehicle). There are two types of delta wing, which is 

associated to UAV or UCAV applications, the first one is slender wing and the second 

type is the non-slender wing.  Slender delta wing is for wing profile that have the swept 

angle more than 60° while non-slender delta wing has angle less than 60° as illustrated 

in Figure 1.1. 

 

Figure 1.1 Slender vs. non-slender types of Delta wing 

One of the advantages for delta shape is the wing can achieve high speed at 

certain flight conditions (Luckring, 2010; Pevitt & Alam, 2014). The non-slender wing 

also become an important area in aerodynamic research recently. There are different 

type of delta wings that can be applied for UAC and UCAV aircraft.  They can be 

either tailed or tailless, cropped or compound, cranked or Ogival, lambda or diamond 

delta’s wing. These different types of delta configurations are illustrated in Figure 1.2.  

Less than 
60° swept 

More than 
60° swept 

Non-slender 

Slender 
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Figure 1.2 Types of Delta wing configurations (Pevitt and Alam, 2014) 

 

There are many types of UAVs, each of them is depends on the mission and 

application required. The flight range also depends on the Reynolds number of a 

mission as shown in Figure 1.3. For example, the operating Reynolds number for 

UCAV is up to 107.  

 

Figure 1.3 Reynolds number range for UAV (Gursul, 2004) 

Tailed Delta          Tailless Delta       Cropped Delta           Compound 

Cranked Arrow Ogival Delta           Lambda Wing           Diamond 
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There are several aircraft UCAV programmes around the globe as shown in 

Figure 1.4. Most of the UCAV design incorporated with the lambda wing planform 

with highly blended wing design. Modern UCAV configurations preferred to use 

medium to highly swept wings with either rounded or variable leading edge geometries 

(Schütte, 2016). Highly blended flying wing designs commonly used to achieve a 

stealthy and agile attribute, which are one of the key technologies affecting the UCAV 

design (Sepulveda & Smith, 2017). This is mainly due to the stealth requirements and 

its mission priority (Sepulveda & Smith, 2017). One of the problem with the delta 

wing aircraft configurations are having nonlinear aerodynamic characteristics 

(Polhamus, 1966) due to the complex vortical flow above the wing. More numerical 

and experimental data are needed to understand the flow topology above the wing.   

 

Figure 1.4 Current and future UCAV design 

Notes:  A = Dassault nEUROn (Dassault Aviation, 2018); B = Taranis (BAE Systems, 2018); 

C = X-47B (Northrop Grumman Corporation, 2018); D = X-47A Pegasus (Defense 

Advanced Research Projects Agency, 2001); E = AURA UCAV (Indian Defence Update, 

2018); F = Phantom Ray Demonstrator (Boeing, 2010); G = K-X UCAV (Air 

Recognition, 2017); H = KUS-FC (Korean Air Tech Centre, 2016); I = Star Shadow 

(Minnick, 2018).  
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Based on several considerations, diamond-shaped has been chosen as one of 

the planform for UCAV design. One of the UCAVs that will be used in the future is 

diamond-shaped profile as shown in Figure 1.5. It was developed by the Northrop 

Corporation Company namely X – 47A. Therefore, this thesis has focused on the dethe 

diamond shaped wing.  

 

Figure 1.5 Diamond shaped X-47A UCAV 

To focus on UCAV and delta wing related research, NATO has established 

several research groups under the AVT (Advance Vehicle technology) organization. 

There are several research series with different objectives under the AVT.  

Among the first facet was the AVT–113 group that was established in 2002. 

This group is called the Vortex Flow Experiment Two (VFE-2). The aims of this team 

were to increase technology readiness for the military knowledge and for future aircraft 

wing (Lamar & Hummel, 2008).  One of the main objectives of AVT–113 is to focus 

on a flat delta wing with different leading edge profile. The wing has the swept angle 

of 65°. This VFE-2 group re-uses the NASA delta wing model tested in 1997 as a 

platform to understand the flow characteristics of delta wing. The profile and wind 

tunnel set up are as shown in Figure 1.6. The main objectives of this NATO working 

group were to investigate the effects of leading edge bluntness, angle of attack, 

Reynolds number and Mach number on the vortical flow above slender delta-shaped 

wing of 65° swept angle (Chu & Luckring, 1996; Luckring 2013; Lamar & Hummel, 

2008).  
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(a) The VFE-2 profile of NASA 65° delta wing  

 

(b) The installation of VFE-2 delta wing in NASA Langley Research Center 

Figure 1.6 The AVT-113 experimental model and testing in NASA wind tunnel 
(Luckring, 1996)   

 During the campaign, several experimental and numerical works were 

performed on 65° delta wing across the European wind tunnels and CFD centres. The 

results obtained from the blunt-edged delta wing were compared with those from the 

sharp leading edge wing. The result from this experiment provides the knowledge on 

the starting point of separation, location of the primary vortex and vortex breakdown 

that can guide the numerical group to improve the numerical calculations (Lamar & 

Hummel, 2008). For the blunt-edged wing, the flow separation is no longer fixed at 

the leading edge, thus the flow is dependent on the Reynolds numbers (Hummel, 

2008). At certain speeds and high angle of attack, the vortical flow became more 

complicated to be predicted experimentally or numerically. These projects ended in 
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2010 and several hypotheses were made and well documented (Hummel, 2008; 

Luckring, 2013; Luckring and Hummel, 2013). This VFE-2 profile has become as a 

standard platform for the delta wing profile developed by NATO recently.  

Continuing from the AVT–113 tasks, recently, several other AVT were 

established to investigate a higher complexity level of unit problems in vortical flow 

on delta shaped wing, the most related to the UCAV development were the NATO 

AVT–161 and AVT–183. The Task Group AVT–161 was formed to perform the 

aerodynamic research on the complex profiles called SACCON configurations.  

SACCON is a proposed planform for the NATO to venture into the Uninhabited 

Combat Air Vehicle (UCAV), shown in Figure 1.7. The SACCON configuration was 

design to incorporate some design features from the industry.  

 

Figure 1.7 AVT-161 SACCON model and configurations (Cummings and 
Schütte, 2012) 

The group has found that the flow fields around the wing were found to be very 

complex that involved many interacting vortical flows as in Figure 1.8 (Cummings & 

Schütte, 2012; Cummings, Liersch and Schütte, 2018). Several problems cannot be 

solved such as transition location mid board of the wing by Numerical or 

experimentally during the AVT–161. 

Λle = 53° AR = 3.1 



8 

 

Figure 1.8 Complex SACCON flow field (Fink, 2010; Cummings and Schütte, 
2012) 

In order to reduce the complexity from the SACCON wing, the NATO research 

team has designed a reduce-complexity model so the targeted area can be focused. To 

relate the different level of complexity of that framework, the NATO used hierarchical 

decomposition method as shown in Figure 1.9 (Luckring et al., 2016).   

 

Figure 1.9 NATO hierarchical decomposition of aerodynamic complexity 
connection to SACCON (Luckring et al., 2016)  
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In order to reduce the complexity of the SACCON wing, another NATO 

research group has been established, AVT–183. A simplified model called Diamond 

was introduced. The profile of the Diamond wing was derived from the SACCON 

configuration with similar wing swept angle as shown in Figure 1.10. The data 

obtained from the diamond wing should provide a better insight into the complexity of 

the SACCON wing. Therefore, the Diamond wing was used to provide the 

fundamental flow physics for the complicated SACCON profile.  

 

Figure 1.10 AVT-183 Diamond wing configuration as simplified AVT-161 
SACCON (Luckring et. al., 2016)  

Diamond is a non-slender wing that has blunt 53° swept angle and trailing edge 

swept angle -26.5° with a constant NACA 64A006 aerofoil across the wing (Luckring 

et. al., 2016). The task group will further investigate the detailed development of the 

primary vortex in the leading-edge area, details interaction between the primary vortex 

and the inboard inner vortex. Also to improve the Numerical prediction on both 

planforms (Hövelmann & Brietsamter, 2014; Luckring & Boelens, 2011).   

The first experimental work on Diamond was performed in The Institute of 

Aerodynamics and Fluid Mechanics Technische Universität München (TUM-AER) 

(Hövelmann, & Breitsamter, 2012; 2014). The initial results has shown that the 

interacting vortical flow also happened on Diamond wing. 
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The AVT-183 research was focused on constant airfoil Diamond wing. Besides 

the advantage of the potential lift induced inboard of the wing, the main advantage of 

diamond wings is that the induced lift produced by the vortex in the leading-edge area 

can enhance the aircraft longitudinal static stability. The future work will include 

experimental investigations to help distinguish modelling requirements for successful 

prediction of blunt leading-edge vortex separation relevant to Diamond wing. The 

correct prediction of Diamond wing configuration would not only can improve the 

understanding of the aerodynamics of diamond-shape planform itself but it would also 

be a prerequisite to model other SACCON-relevant vortex phenomena and their 

aerodynamic effects.  

 Problem Statement   

Aerodynamics characteristics is one of the importance factors in aircraft design 

process. It is more difficult to design Diamond-shaped UCAV aircraft because the flow 

field above the upper surface is known to be very complicated. The complexity of the 

flow particularly in the leading edge increases when the leading edge is rounded. The 

non-slender type of Diamond-shaped wing is also a derivation from the delta wing 

configuration. At higher angle of attack, the flow is extremely complicated and 

unresolved.  

As has been explained, the experimental data for VFE-2 configuration 

(classified as slender wing) has been well documented and has a distinct contribution 

to the CFD simulation to well predict the vortical flow above the VFE-2 standard delta 

wing (Hummel & Cummings, 2013). The similar developed turbulent model were used 

to simulate the aerodynamic characteristics and performances of Diamond wing has 

shown some discrepancy in the calculation (Hitzel et al., 2016; Luckring, 2019). This 

discrepancy was due to the input information used in the development of the turbulent 

model is based on the information on the VFE-2 configuration which is an isolated 

unit problem. For the Diamond wing, it is a combined unit problem.      
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The numerical calculation can be improved by the comprehensive data 

provided by wind tunnel experiment. However, the experimental data for Diamond 

wing configuration is not well documented when compare to the VFE-2 configuration. 

Most of the published data was found to be limited to the primary vortex in the leading-

edge region only. However, the flow above the Diamond wing consists of several other 

structures. According to Luckring et. al. (2016), the main flow structure above the 

Diamond wing configurations are (i) incipient separations; a region where the 

boundary layer near the leading edge initiates the leading-edge vortex, (ii) primary 

vortex, (iii) secondary vortex, (iv) attached flow and (v) inner vortex. This complicated 

flow topology may be due to the effect of configuration. Beside the primary vortex, 

the flow structures inboard of the wing is consisted with another vortex called is as the 

inner vortex. The information of this vortex is still limited to date. More wind tunnel 

experiments are needed to improve the understanding of the inboard structures 

formation, progression and the vortical flow interaction.  

More wind tunnel experiments are needed in order to obtain the flow topology 

on the upper surface of the Diamond wing particularly the inner vortex and flow in the 

inboard region. Information of the flow physics such as the distribution pattern of the 

airflow, the pressure distribution, the shear layer structures, the location of vortices 

onset, size and its intensity are the substantial data for the improvement of the turbulent 

model. This information would have improved the numerical calculation and 

prediction of the blunt-edged Diamond wing configuration aerodynamic 

characteristics and performances.            
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 Research Objectives  

The research objectives of this project are: 

1. To identify the vortical structures on diamond wing configuration using 

experimental approaches. 

2. To investigate the effects of angle of attack and Reynolds number variation on 

the detail development and interaction of the primary and inner vortices.  

3. To perform physical measurements on the vortical flow structures properties 

above the Diamond wing and in particular the inner vortex inboard of the wing.      

 Research Scope 

To achieve the objectives, the scope of this thesis are: 

1. The research investigation is conducted using experimental approach only. All 

the experiment is carried out in UTM Aerolab facility using UTM-LST wind 

tunnel. The selection of the experimental method conducted was based on the 

available test equipment and instrumentations with their respective limits.          

2. The model was designed to meet 53° sweep Diamond wing with rounded 

leading-edge model as provided by the NATO AVT-183 group. The size of the 

model fabricated in UTM is scaled 1:1 to the model in Munich Technical 

University.  

3. All the test experiments were conducted in static state wind tunnel test.   

4. The experiments were carried out in atmospheric air as working conditions and 

flow was assumed to be incompressible at three Reynolds number conditions 

in subsonic region.  

5. The experiments were also carried out to investigate the effects of Reynolds 

Numbers of 1×106, 2×106, and 3×106 based on wing chord. These Reynolds 
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Number conditions were selected to represent the transitional flow conditions 

during the take-off and landing.  

6. This Diamond wind tunnel model was fabricated at similar size to the actual 

Diamond wing UCAV proposed by the NATO group. Therefore, the similarity 

test is not conducted in this study.  

7. The aerodynamic longitudinal static stability was investigated by pitching the 

model angle of attack ranges from 0° to 30° with increments of 3°. The pitching 

angles are expected can fulfilled all ranges of flight condition. However, the 

maximum angle of attack tested may differ from the experiments carried out 

by the NATO group which mainly due to the physical constraint of UTM 

Aerolab.  

8. All the investigations were measured on the upper surface of the wing only. 

The flow on lower surface of the wing is not in the scope. 

9. For the off-surface measurement, the investigation were made at selected three 

position, � �� = 0.4, 0.5, 0.6⁄   and at selected angle of attack 6°, 9°, 12°, 15° 

and 18° only. At this angle of attack, the desired inboard flow separation occurs 

for all Reynolds number cases.   

  Significance of the study 

The flow above Diamond wing is not fully understood. On the upper surface 

of the wing, the primary vortex developed in the leading edge while the inner vortex 

developed inboard of the wing. The detail interaction between the primary and the 

inner vortex is not well explained. The flow further inboard of the wing is also not 

available to date.  This thesis will provide the detail interaction between these vortices 

and also the flow topology inboard of the wing. The information gathered from this 

study would be valuable for an accurate prediction of vortical flow above diamond-

relevant planform.   
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