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ABSTRACT 

 

 

 

Nowadays, electronic communication devices tend to design smaller in size, lighter 

in weight, lower in cost and higher performance. Individual may tend to use electronic 

communication devices when exchanging sensitive matters, such as personal details, 

contract documents, company secrets and specific passwords are sent to other parties. 

Since internet is one of the important key contacts and electronically communicates 

with billions of people, protection for the transmission of important messages over the 

internet is vital. Encryption plays a vital role for every user in ensuring security of 

communication within the organization. Hence the algorithms needed for safe 

communication. The motivation of this project is to protect digital data in computer 

confidentiality, as it is often stored on computer systems and distributed through the 

internet or other computer networks. Rivest-Shamir-Adleman algorithm is first 

introduced by Ron Rivest, Adi Shamir and Leonard Adelman in 1977, and it is known 

as one of the famous public key cryptography algorithms since it is an asymmetric 

cryptography. Besides, the theory behind RSA is relatively simple and easy for 

modification purpose as it relies on algorithm such as factorization and modular 

exponentiation. In this paper, the whole process and algorithm has been described for 

256-bit key size. Due to the bit length of modulus, the work included different but 

suitable implementation, which is the basic, radix-4 and radix-16 implementations to 

reduce the speed of cipher-decipher process. Implementation on Verilog HDL using 

Vivado Design Suite software has been done. Enhancement on speed and delay is the 

main constraint of this project. According to the synthesis results, the radix-16 

Montgomery Multiplier implemented in RSA cipher can be implemented with a nearly 

60% reduction in encryption latency. However, radix implementation will involve 

more loop unrolling steps that resulted in a higher gate count. It is conceivable to 

absorb the increase in the gate count in the RSA cipher in return for performance as 

chip technology improves. 
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ABSTRAK 

 

 

 

Pada masa kini, teknologi peranti komunikasi elektronik cenderung kepada 

bentuk saiz yang lebih kecil, lebih ringan, lebih rendah dalam kos dan prestasi yang 

lebih tinggi. Individu mungkin cenderung menggunakan peranti komunikasi 

elektronik apabila bertukar maklumat yang sensitif, seperti butiran peribadi, dokumen 

kontrak, rahsia syarikat dan kata laluan, khusus dihantar kepada pihak lain. 

Memandangkan internet adalah salah satu hubungan utama penting dan berkomunikasi 

secara elektronik dengan berbilion orang, perlindungan untuk penghantaran mesej 

penting melalui internet adalah penting. Penyulitan memainkan peranan penting bagi 

setiap pengguna dalam memastikan keselamatan komunikasi dalam organisasi. Oleh 

itu, algoritma diperlukan untuk komunikasi perlu selamat. Motivasi projek ini adalah 

untuk melindungi data digital dalam kerahsiaan komputer, kerana ia sering disimpan 

pada sistem komputer dan diedarkan melalui internet atau rangkaian komputer lain. 

Algoritma Rivest-Shamir-Adleman diperkenalkan oleh Ron Rivest, Adi Shamir dan 

Leonard Adelman pada tahun 1977, dan ia dikenali sebagai salah satu algoritma 

kriptografi kunci awam yang terkenal kerana ia adalah kriptografi asimetrik. Selain 

itu, teori di sebalik RSA adalah agak mudah dan mudah untuk tujuan pengubahsuaian 

kerana ia bergantung pada algoritma seperti pemfaktoran dan eksponensial modular. 

Dalam makalah ini, semua modul dalam algoritma RSA telah diterangkan untuk saiz 

utama 256 bit. Disebabkan kepanjangan bit modulus, kerja itu termasuk pelaksanaan 

yang berbeza tetapi sesuai, iaitu pelaksanaan asas, radix-4 dan radix-16 untuk 

mengurangkan kelajuan proses cipher-decipher.Pelaksanaan Verilog HDL 

menggunakan perisian Quartus II telah dilakukan. Peningkatan kelajuan adalah 

kekangan tujuan utama untuk projek ini. Mengikut keputusan sintesis, radix-16 

Montgomery Multiplier yang dilaksanakan dalam cipher RSA boleh dilaksanakan 

dengan pengurangan hampir 60% dalam kependaman penyulitan. Ia boleh difikirkan 

untuk menyerap peningkatan dalam kiraan pintu dalam cipher RSA sebagai balasan 

untuk prestasi apabila teknologi cip bertambah baik. 
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CHAPTER 1 

 

 

 
INTRODUCTION 

 

 

 

 

1.1 Problem Background 

 

 
Today, internet is one of the most important outlets of contact and information for 

human beings. Thousands of people communicate electronically with each other [1]. 

Besides, information technology is also increasing lively throughout these days. 

Unfortunately, internet can no longer guarantee the provision of secure information. 

Although the internet was built to be durable and effective, it was also not to be 

inherently safe. There are different types of search engines continue to grow along 

with mushroomed viruses, bugs, spam, and hackers which can easily steal confidential 

data [2]. The important aspects for delivery and storage of data and information are 

security and confidentiality problem. To ensure information is safe and complete, 

human need to think of ways to provide strong protection for information in the virtual 

world [3]. 

 

To deliver secure services, many technologies depend on public cryptography. The 

essential operations in processing many types of public-key cryptosystems are 

modular multiplication and modular division with a lengthy modulus. One of the most 

extensively used public key algorithms today is Rivest, Shamir, and Adleman (RSA). 

The computation of modular exponentiation in RSA needs repeated modular 

multiplications. Thus, computation time for this algorithm is extremely large and not 

practical to be used since data transmission often need a high speed. Besides, when 

future technology system requirements and real-time computing speed are considered 

in wireless communications and personal communications systems, speed 

improvement will be getting more critical. 

 

Since the division process is time-consuming in modular reduction, Montgomery 

devised a novel approach that avoids division. The Montgomery multiplication 



2  

algorithm is a well-known method of implementing a modular multiplication 

architecture (MM). It's a time-saving approach for modular multiplication with any 

modulus. Instead of divisions, which are utilised in a traditional modular operation, 

the method employs simple multiplications by a power of two. However, because these 

Montgomery designs are frequently sophisticated, it's not always clear whether they 

offer the required speed. Thus, it is worth to research and implement more on this new 

modular multiplication architecture. 

 

On the other hand, the apparent challenge in factoring huge semi-primes is the 

foundation for RSA cryptography. Factoring two primes is used as the reverse of 

multiplication, and it becomes complicated when the values of the two prime numbers 

grow larger. Consider the RSA Factoring Challenge, which was established by RSA 

Laboratories in 1991. There are still many moduli that need to be factored. On 

December 12, 2009, a total of 13 researchers calculated a 768 bits RSA modulus (232 

decimal digit number) over the course of two years, by utilising hundreds of 

simultaneous computers, a work equivalent to about 2000 years of computation on a 

single-core 2.2 GHz AMD CPU. It is proved that the longer the modulus' key length, 

the longer it takes to factorise. Since the algorithm strength is depends on the key 

length, it seems to be important to discover a more efficient factoring algorithms and 

advances in cryptanalysis techniques. 

 

1.2 Problem Statement 

 

 
To maintain the confidentiality of digital data, an encryption key is used, since it is 

often stored on computer systems and distributed via the internet or other computer 

networks. Asymmetric cryptography allows the use of public key during encryption 

and private key during decryption. Security is one of the main concerns to protect data 

in a complicated internet system. Due to limited battery power, security requirements 

are becoming increasingly crucial for private data transfer through mobile devices with 

internet access. It is vital to create efficient hardware architectures for applications that 

required energy-efficient cryptosystem, to perform quick modular multiplications but 

consume low energy. 



3  

Besides, RSA algorithm is a high secure cryptosystem used for data transmission. But, 

for real-time applications such as video processing, using RSA algorithm to perform 

encryption or decryption include a lot of calculation and the speed is far too slow [4]. 

As a result of the developed wide range of decomposition techniques, key length will 

increase to assure safety, resulting in increased computation. In addition, it also 

requires processing a big number of modular multiplications repeatedly. Therefore, 

optimized hardware implementation is required to provide low delay RSA 

performance by using fast modular multiplications [5]. 

 
1.3 Hypothesis 

 

 
Montgomery algorithm is a feasible option for modular multiplication and 

exponentiation to attain speed improvement or area reduction in an asymmetric 

cryptosystem. We believe that if we focus on improving the Montgomery algorithm 

through the hardware architecture, a high throughput and low latency RSA 

encryption/decryption architecture can be achieved after some practical 

implementations. 

 
1.4 Objectives 

 

 
The objectives of the research are: 

 

 
(a) To design a fast and area efficient architecture for Montgomery Modular 

Exponentiation and integrate the design in RSA algorithm. Besides, it able to 

validate that the algorithm used in cipher is correct and encrypted data is match 

with expected result. 

 

(b) To verify the functionality and synthesis the RTL design of the RSA algorithm 

using proper synthesis tools. 

 

(c) To analyse the performance matric in terms of area, latency, power and 

throughput for Radix n-th implementation regard to normal implementation. 
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1.5 Scope 

 

 
The aim of the project is to design and improve the critical constraint of an encryption 

cipher unit using Hardware Description Language. Meanwhile, functionality of 

encryption and decryption is still the most essential part for an encryption cipher. The 

effect of performance due to different techniques of design in algorithms is vary. 

Therefore, a suitable modification technique should be chosen to use as to either 

improve on its power, performance, and area. Detailed scopes are elaborated to obtain 

accurate result and compare with the existing results. 

 
To perform this project, the first step is to implement a basic RSA algorithm using 

RTL design for baseline comparison purpose. Then, design a High-Radix Montgomery 

Modular Multiplier to perform the modular exponentiation in this algorithm. The 

design is required to be compiled successful and waveform is simulated to verify the 

algorithm’s functionality. By using Synopsys VCS tool, SAIF file is also generated to 

perform power analysis. The design then can be used to perform synthesis by using 

Synopsys 32nm Generic Library in Synopsys Design Compiler. The original basic 

algorithm’s performance should be compared with the basic design after 

implementation, in term of latency, throughput, power consumption, and area. Since 

performance of area and power are not in the scope of work, only latency and 

throughput will be optimized for this algorithm. 

 
Besides, the design will first be simulated using three numbers of bit length as input, 

which are 256 bits, 1024 bits and 2048 bits. This is due to the security claim and 

security level are typically expressed in bits. The lengthy the key, the complicated the 

process of cracking. Due to the number of bits used as key, the radix value that is 

suitable to be implemented in Montgomery Multiplier will need to be dividable with 

the key length with no remainder. Thus, a basic, radix-4 and radix-16 will be chosen 

to be implemented, since the higher the radix value, the bigger the lookup table used. 
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1.6 Report Structure 

 

 
The structure of this project report is organized as follows: Chapter 1 will cover the 

introduction to the problem, a brief background on the main motivation of tackling this 

topic, the problem that has been captured, the hypothesis that has been concluded and 

what’s planned to be achieved in this study. In Chapter 2, the background of an 

encryption system, details of algorithm in RSA encryption/decryption system and a 

comprehensive critical review on the popular techniques have been stated in detail. 

Chapter 3 presents the methodology of the project is presented in this chapter which 

including the general methodology, design overview as well as the software tool that 

applied to the project. Chapter 4 provides the overall result of the whole project work. 

It concentrates the analysis of the results obtained for the project using Vivado Design 

Suite and Design Compiler. It also interprets the findings along with discussion related 

to critical path delay, latency, area, and power. Lastly, Chapter 5 summarizes the 

project findings by fulfilling all the requirements based on the project objectives. In 

addition, it also includes some useful recommendations to make further improvement 

to the design architecture. 
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