
ASIC IMPLEMENTATION OF LOW LATENCY MONTGOMERY MODULAR

EXPONENTIATION

LIEW PUI YEN

UNIVERSITI TEKNOLOGI MALAYSIA

ASIC IMPLEMENTATION OF LOW LATENCY MONTGOMERY MODULAR

EXPONENTIATION

LIEW PUI YEN

A project report submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JULY 2022

ii

DEDICATION

This thesis is dedicated to my father, who taught me that the best kind of

knowledge to have is that which is learned for its own sake. It is also dedicated to my

mother, who taught me that even the largest task can be accomplished if it is done

one step at a time.

iii

ACKNOWLEDGEMENT

The completion of a project usually depends on cooperation, coordination, and

combined efforts from different people. While I am performing my project assignment,

I had to take some trusted people's support and encouragement, who deserve my

greatest gratitude. First, I would like to express my sincere appreciation to my Final

Year Project course’s lecturer, Dr. Shahidatul Sadiah Binti Abdul Manan for her

guidance in accomplishing the task she has given to me. Her guideline helped a lot

when I am doing my design project. Besides, I am also grateful and appreciate the

effort of other lecturers and staffs for providing cooperation, valuable information,

suggestions, and guidance in the preparation of this final year project.

Deepest thanks and appreciations to my parents, family, special mates, and

others for their cooperation, encouragement, constructive suggestion and full of

support for the project completion, from the beginning until the end. Moreover, I

would like to express gratitude to my family and friends for the moral and financial

support. I would also like to thank for my course mates for giving a big cooperation to

my project. They often provide me with valuable suggestion to improve my project.

Finally, I would also like to thank to all the people who have supported me to complete

the project directly or indirectly.

iv

ABSTRACT

Nowadays, electronic communication devices tend to design smaller in size, lighter

in weight, lower in cost and higher performance. Individual may tend to use electronic

communication devices when exchanging sensitive matters, such as personal details,

contract documents, company secrets and specific passwords are sent to other parties.

Since internet is one of the important key contacts and electronically communicates

with billions of people, protection for the transmission of important messages over the

internet is vital. Encryption plays a vital role for every user in ensuring security of

communication within the organization. Hence the algorithms needed for safe

communication. The motivation of this project is to protect digital data in computer

confidentiality, as it is often stored on computer systems and distributed through the

internet or other computer networks. Rivest-Shamir-Adleman algorithm is first

introduced by Ron Rivest, Adi Shamir and Leonard Adelman in 1977, and it is known

as one of the famous public key cryptography algorithms since it is an asymmetric

cryptography. Besides, the theory behind RSA is relatively simple and easy for

modification purpose as it relies on algorithm such as factorization and modular

exponentiation. In this paper, the whole process and algorithm has been described for

256-bit key size. Due to the bit length of modulus, the work included different but

suitable implementation, which is the basic, radix-4 and radix-16 implementations to

reduce the speed of cipher-decipher process. Implementation on Verilog HDL using

Vivado Design Suite software has been done. Enhancement on speed and delay is the

main constraint of this project. According to the synthesis results, the radix-16

Montgomery Multiplier implemented in RSA cipher can be implemented with a nearly

60% reduction in encryption latency. However, radix implementation will involve

more loop unrolling steps that resulted in a higher gate count. It is conceivable to

absorb the increase in the gate count in the RSA cipher in return for performance as

chip technology improves.

v

ABSTRAK

Pada masa kini, teknologi peranti komunikasi elektronik cenderung kepada

bentuk saiz yang lebih kecil, lebih ringan, lebih rendah dalam kos dan prestasi yang

lebih tinggi. Individu mungkin cenderung menggunakan peranti komunikasi

elektronik apabila bertukar maklumat yang sensitif, seperti butiran peribadi, dokumen

kontrak, rahsia syarikat dan kata laluan, khusus dihantar kepada pihak lain.

Memandangkan internet adalah salah satu hubungan utama penting dan berkomunikasi

secara elektronik dengan berbilion orang, perlindungan untuk penghantaran mesej

penting melalui internet adalah penting. Penyulitan memainkan peranan penting bagi

setiap pengguna dalam memastikan keselamatan komunikasi dalam organisasi. Oleh

itu, algoritma diperlukan untuk komunikasi perlu selamat. Motivasi projek ini adalah

untuk melindungi data digital dalam kerahsiaan komputer, kerana ia sering disimpan

pada sistem komputer dan diedarkan melalui internet atau rangkaian komputer lain.

Algoritma Rivest-Shamir-Adleman diperkenalkan oleh Ron Rivest, Adi Shamir dan

Leonard Adelman pada tahun 1977, dan ia dikenali sebagai salah satu algoritma

kriptografi kunci awam yang terkenal kerana ia adalah kriptografi asimetrik. Selain

itu, teori di sebalik RSA adalah agak mudah dan mudah untuk tujuan pengubahsuaian

kerana ia bergantung pada algoritma seperti pemfaktoran dan eksponensial modular.

Dalam makalah ini, semua modul dalam algoritma RSA telah diterangkan untuk saiz

utama 256 bit. Disebabkan kepanjangan bit modulus, kerja itu termasuk pelaksanaan

yang berbeza tetapi sesuai, iaitu pelaksanaan asas, radix-4 dan radix-16 untuk

mengurangkan kelajuan proses cipher-decipher.Pelaksanaan Verilog HDL

menggunakan perisian Quartus II telah dilakukan. Peningkatan kelajuan adalah

kekangan tujuan utama untuk projek ini. Mengikut keputusan sintesis, radix-16

Montgomery Multiplier yang dilaksanakan dalam cipher RSA boleh dilaksanakan

dengan pengurangan hampir 60% dalam kependaman penyulitan. Ia boleh difikirkan

untuk menyerap peningkatan dalam kiraan pintu dalam cipher RSA sebagai balasan

untuk prestasi apabila teknologi cip bertambah baik.

vi

TABLE OF CONTENTS

TITLE PAGE

DECLARATION i

DEDICATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xi

LIST OF SYMBOLS xii

LIST OF APPENDICES xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Background 1

1.2 Problem Statement 2

1.3 Hypothesis 3

1.4 Objectives 3

1.5 Scope 4

1.6 Report Structure 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Introduction 6

2.1.1 Roles of Cryptography 7

2.1.2 Encryption and Decryption 9

2.1.3 Types of Cryptography Techniques 10

2.2 RSA Algorithm 11

2.2.1 Key Generation 11

2.2.2 Encryption Process 12

vii

 2.2.3 Decryption Purpose 12

2.2.4 Possible Attacks on RSA Algorithm 13

2.3 Related Work 14

2.4 Limitation 18

2.5 Research Gap 19

2.6 Chapter Summary 20

CHAPTER 3 RESEARCH METHODOLOGY 21

3.1 Introduction 21

3.2 Overall Project Flow 21

3.3 Hardware Implementation of RSA Algorithm 24

 3.3.1 Montgomery Modular Multiplier 24

 3.3.1.1 High-Radix Montgomery Modular

Multiplication

25

 3.3.1.2 Lookup Table Approach 27

 3.3.2 Modular Exponentiation 28

 3.3.2.1 Binary Method for Montgomery

Modular Exponentiation

29

3.4 Tools and Platforms 30

 3.4.1 Vivado Design Suite 30

 3.4.2 Synopsys Design Compiler 31

3.5 Chapter Summary 32

CHAPTER 4 RESULTS & DISCUSSION 33

4.1 Overview 33

4.2 Functional Simulation Result 33

4.3 Synthesis Result 35

4.4 Performance Analysis 40

4.5 Optimization 43

 4.5.1 RTL 43

4.6 Chapter Summary 45

CHAPTER 5 CONCLUSION AND FUTURE WORKS

5.1 Conclusion 47

viii

5.2 Future Works 49

REFERENCES 50

ix

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 3.1: Lookup Table Based Radix-16 Montgomery Modular

Multiplication

28

Table 4.1: Synthesis result comparison for the three implementation of

Montgomery Multiplier

41

Table 4.2: Synthesis result comparison for FPGA implementation 42

Table 4.3: Synthesis result comparison for ASIC implementation 42

Table 4.4: Result comparison with different RTL coding of lookup table
44

Table 4.5: Result comparison using Radix-16 implementation with

different RTL coding of lookup table

44

Table 4.6: Result comparison using Radix-4 implementation with

different RTL coding of lookup table

45

x

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1: Key generation algorithm for RSA cipher 12

Figure 2.2: Encryption algorithm for RSA cipher 12

Figure 2.3: Decryption algorithm for RSA Cipher 13

Figure 3.1: Overall Project Flow 23

Figure 3.2: Montgomery Modular Multiplication Algorithm 25

Figure 3.3: Radix-16 Montgomery Modular Multiplication Algorithm 25

Figure 3.4: Radix-16 Montgomery Modular Multiplication ASM chart 26

Figure 3.5: Radix-16 Montgomery Modular Multiplication Hardware

Architecture 27

Figure 3.6: Right-to-Left Binary Algorithm 29

Figure 4.1: RSA Encryption/Decryption System Simulation Result 34

Figure 4.2: Basic Montgomery Multiplier Implementation Simulation

Result 34

Figure 4.3: Radix-4 Montgomery Multiplier Implementation Simulation

Result 35

Figure 4.4: Radix-16 Montgomery Multiplier Implementation Simulation

Result 35

Figure 4.5: Critical path delay for the three implementations using

different timing constraints 36

Figure 4.6: Number of clock cycles used for the three implementations

using different bit length of operand 36

Figure 4.7: Cell counts for the three implementations using different

timing constraints 38

Figure 4.8: Total power of the three implementations using different time

constraints 39

xi

LIST OF ABBREVIATIONS

RSA - Rivest, Shamir, and Adleman

HDL - Hardware Description Language

CPU - Central Processing Unit

GPU - Graphic Processing Unit

MM - Montgomery Modular Multiplication

DC - Design Compiler

FPGA - Field-Programmable Gate Array

CPLD - Complex Programmable Logic Device

LVT - Low V Threshold

HVT - High V Threshold

xii

LIST OF SYMBOLS

mod - Modulus

gcd - Greatest Common Divider

1

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Today, internet is one of the most important outlets of contact and information for

human beings. Thousands of people communicate electronically with each other [1].

Besides, information technology is also increasing lively throughout these days.

Unfortunately, internet can no longer guarantee the provision of secure information.

Although the internet was built to be durable and effective, it was also not to be

inherently safe. There are different types of search engines continue to grow along

with mushroomed viruses, bugs, spam, and hackers which can easily steal confidential

data [2]. The important aspects for delivery and storage of data and information are

security and confidentiality problem. To ensure information is safe and complete,

human need to think of ways to provide strong protection for information in the virtual

world [3].

To deliver secure services, many technologies depend on public cryptography. The

essential operations in processing many types of public-key cryptosystems are

modular multiplication and modular division with a lengthy modulus. One of the most

extensively used public key algorithms today is Rivest, Shamir, and Adleman (RSA).

The computation of modular exponentiation in RSA needs repeated modular

multiplications. Thus, computation time for this algorithm is extremely large and not

practical to be used since data transmission often need a high speed. Besides, when

future technology system requirements and real-time computing speed are considered

in wireless communications and personal communications systems, speed

improvement will be getting more critical.

Since the division process is time-consuming in modular reduction, Montgomery

devised a novel approach that avoids division. The Montgomery multiplication

2

algorithm is a well-known method of implementing a modular multiplication

architecture (MM). It's a time-saving approach for modular multiplication with any

modulus. Instead of divisions, which are utilised in a traditional modular operation,

the method employs simple multiplications by a power of two. However, because these

Montgomery designs are frequently sophisticated, it's not always clear whether they

offer the required speed. Thus, it is worth to research and implement more on this new

modular multiplication architecture.

On the other hand, the apparent challenge in factoring huge semi-primes is the

foundation for RSA cryptography. Factoring two primes is used as the reverse of

multiplication, and it becomes complicated when the values of the two prime numbers

grow larger. Consider the RSA Factoring Challenge, which was established by RSA

Laboratories in 1991. There are still many moduli that need to be factored. On

December 12, 2009, a total of 13 researchers calculated a 768 bits RSA modulus (232

decimal digit number) over the course of two years, by utilising hundreds of

simultaneous computers, a work equivalent to about 2000 years of computation on a

single-core 2.2 GHz AMD CPU. It is proved that the longer the modulus' key length,

the longer it takes to factorise. Since the algorithm strength is depends on the key

length, it seems to be important to discover a more efficient factoring algorithms and

advances in cryptanalysis techniques.

1.2 Problem Statement

To maintain the confidentiality of digital data, an encryption key is used, since it is

often stored on computer systems and distributed via the internet or other computer

networks. Asymmetric cryptography allows the use of public key during encryption

and private key during decryption. Security is one of the main concerns to protect data

in a complicated internet system. Due to limited battery power, security requirements

are becoming increasingly crucial for private data transfer through mobile devices with

internet access. It is vital to create efficient hardware architectures for applications that

required energy-efficient cryptosystem, to perform quick modular multiplications but

consume low energy.

3

Besides, RSA algorithm is a high secure cryptosystem used for data transmission. But,

for real-time applications such as video processing, using RSA algorithm to perform

encryption or decryption include a lot of calculation and the speed is far too slow [4].

As a result of the developed wide range of decomposition techniques, key length will

increase to assure safety, resulting in increased computation. In addition, it also

requires processing a big number of modular multiplications repeatedly. Therefore,

optimized hardware implementation is required to provide low delay RSA

performance by using fast modular multiplications [5].

1.3 Hypothesis

Montgomery algorithm is a feasible option for modular multiplication and

exponentiation to attain speed improvement or area reduction in an asymmetric

cryptosystem. We believe that if we focus on improving the Montgomery algorithm

through the hardware architecture, a high throughput and low latency RSA

encryption/decryption architecture can be achieved after some practical

implementations.

1.4 Objectives

The objectives of the research are:

(a) To design a fast and area efficient architecture for Montgomery Modular

Exponentiation and integrate the design in RSA algorithm. Besides, it able to

validate that the algorithm used in cipher is correct and encrypted data is match

with expected result.

(b) To verify the functionality and synthesis the RTL design of the RSA algorithm

using proper synthesis tools.

(c) To analyse the performance matric in terms of area, latency, power and

throughput for Radix n-th implementation regard to normal implementation.

4

1.5 Scope

The aim of the project is to design and improve the critical constraint of an encryption

cipher unit using Hardware Description Language. Meanwhile, functionality of

encryption and decryption is still the most essential part for an encryption cipher. The

effect of performance due to different techniques of design in algorithms is vary.

Therefore, a suitable modification technique should be chosen to use as to either

improve on its power, performance, and area. Detailed scopes are elaborated to obtain

accurate result and compare with the existing results.

To perform this project, the first step is to implement a basic RSA algorithm using

RTL design for baseline comparison purpose. Then, design a High-Radix Montgomery

Modular Multiplier to perform the modular exponentiation in this algorithm. The

design is required to be compiled successful and waveform is simulated to verify the

algorithm’s functionality. By using Synopsys VCS tool, SAIF file is also generated to

perform power analysis. The design then can be used to perform synthesis by using

Synopsys 32nm Generic Library in Synopsys Design Compiler. The original basic

algorithm’s performance should be compared with the basic design after

implementation, in term of latency, throughput, power consumption, and area. Since

performance of area and power are not in the scope of work, only latency and

throughput will be optimized for this algorithm.

Besides, the design will first be simulated using three numbers of bit length as input,

which are 256 bits, 1024 bits and 2048 bits. This is due to the security claim and

security level are typically expressed in bits. The lengthy the key, the complicated the

process of cracking. Due to the number of bits used as key, the radix value that is

suitable to be implemented in Montgomery Multiplier will need to be dividable with

the key length with no remainder. Thus, a basic, radix-4 and radix-16 will be chosen

to be implemented, since the higher the radix value, the bigger the lookup table used.

5

1.6 Report Structure

The structure of this project report is organized as follows: Chapter 1 will cover the

introduction to the problem, a brief background on the main motivation of tackling this

topic, the problem that has been captured, the hypothesis that has been concluded and

what’s planned to be achieved in this study. In Chapter 2, the background of an

encryption system, details of algorithm in RSA encryption/decryption system and a

comprehensive critical review on the popular techniques have been stated in detail.

Chapter 3 presents the methodology of the project is presented in this chapter which

including the general methodology, design overview as well as the software tool that

applied to the project. Chapter 4 provides the overall result of the whole project work.

It concentrates the analysis of the results obtained for the project using Vivado Design

Suite and Design Compiler. It also interprets the findings along with discussion related

to critical path delay, latency, area, and power. Lastly, Chapter 5 summarizes the

project findings by fulfilling all the requirements based on the project objectives. In

addition, it also includes some useful recommendations to make further improvement

to the design architecture.

50

REFERENCES

[1] Misha Kay, J. Santos, and M. Takane, “Global Observatory for EHealth: Safety

and security on the Internet Challenges and advances in Member States,” Glob.

Obs. eHealth Ser., vol. 4, p. 92, 2011.

[2] I. T. U. Apnic and M. Ipv, “Internet Security Introduction,” no. May, 2016.

[3] T. Tietoturvallisuuden, “Introduction to Information Security Broadcast

encryption,” Network, pp. 1–26, 2010.

[4] N. Nedjah and L. de M. Mourelle, “Parallel computation of modular

exponentiation for fast cryptography,” Int. J. High Perform. Syst. Archit., vol.

1, no. 1, pp. 44–49, 2007, doi: 10.1504/IJHPSA.2007.013290.

[5] E. Öksüzoǧlu and E. Savaş, “Parametric, secure and compact implementation

of RSA on FPGA,” Proc. - 2008 Int. Conf. Reconfigurable Comput. FPGAs,

ReConFig 2008, pp. 391–396, 2008, doi: 10.1109/RECONFIG.2008.13.

[6] “4. Cryptography and the Web - Web Security, Privacy & Commerce, 2nd

Edition [Book].” https://www.oreilly.com/library/view/web-security-

privacy/0596000456/ch04.html (accessed Dec. 06, 2019).

[7] R. B. Lee, A. M. Fiskiran, and R. B. Lee, “Performance Scaling of

Cryptography Operations in Servers and Mobile Clients,” no. May, 2014.

[8] C. F. Kerry and P. D. Gallagher, “Digital Signature Standard (DSS),” Jul. 2013,

doi: 10.6028/NIST.FIPS.186-4.

[9] H. P. Ashok and G. U. Kharat, “Parallel Artificial Bee Colony Optimisation for

Solving Curricula Time-Tabling Problem,” Int. J. Innov. Res. Comput.

Commun. Eng., vol. 2016, no. 1, pp. 1–8, 2016, doi: 10.15680/IJIRCCE.2016.

[10] S. Process et al., “International Journal of Scientific Research,” vol. I, no. 2, pp.

96–106, 2016.

[11] B. Rothke, “A look at the Advanced Encryption Standard (AES),” Inf. Secur.

Manag. Handbook, Sixth Ed., pp. 1151–1158, 2007, doi:

10.1201/9781439833032.ch89.

[12] “A Brief History of Encryption | Security | TechNewsWorld.”

https://www.technewsworld.com/story/70437.html (accessed Nov. 29, 2019).

http://www.oreilly.com/library/view/web-security-
http://www.oreilly.com/library/view/web-security-
http://www.technewsworld.com/story/70437.html
http://www.technewsworld.com/story/70437.html

51

[13] K. Cramer, W. Winfree, and K. Hodges, “Proceedings of SPIE ‘Thermosense-

XXVIII,’” vol. 6205, no. November, p. 62051B1, 2006, doi:

10.1117/12.2538414.

[14] E. Barker, A. Roginsky, G. Locke, and P. Gallagher, “Transitions:

Recommendation for Transitioning the Use of Cryptographic Algorithms and

Key Lengths,” NIST Spec. Publ., no. January, pp. 800–131, 2011.

[15] J. Nechvatal et al., “Report on the development of the Advanced Encryption

Standard (AES),” J. Res. Natl. Inst. Stand. Technol., vol. 106, no. 3, pp. 511–

577, 2001, doi: 10.6028/jres.106.023.

[16] J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, and E. Roback, “Status

report on the first round of the development of the advanced encryption

standard,” J. Res. Natl. Inst. Stand. Technol., vol. 104, no. 5, pp. 435–459, 1999,

doi: 10.6028/jres.104.027.

[17] A. Shamir, “New directions in croptography,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol.

2162, p. 159, 2001, doi: 10.1007/3-540-44709-1_14.

[18] Shieny, “Known Plaintext Attack History of the Known Plaintext Attack

Breaking the Enigma Code How Good are Classic Ciphers ?,” 2008.

[19] “RSA Algorithm | Learn List of Possible Attacks on RSA Algorithm.”

https://www.educba.com/rsa-algorithm/ (accessed Feb. 06, 2022).

[20] I. K. Salah, A. Darwish, and S. Oqeili, “Mathematical Attacks on RSA

Cryptosystem Royal Scientific Society , Jordan Amman Arab University for

Graduate Studies , (sabbatical leave from Al Balqa Applied University),” J.

Comput. Sci., vol. 2, no. 8, pp. 665–671, 2006.

[21] “Security of RSA - GeeksforGeeks.” https://www.geeksforgeeks.org/security-

of-rsa/ (accessed Feb. 06, 2022).

[22] M. Domb, “Distributed Modular Multiplication to Be Processed by a Network

of Limited Resources Devices,” Advances in Intelligent Systems and

Computing, vol. 1183. pp. 104–109, 2021, doi: 10.1007/978-981-15-5856-6_9.

[23] A. Razaque, W. Jinrui, W. Zancheng, Q. B. Hani, M. A. Khaskheli, and W. A.

Bhutto, “Integration of CPU and GPU to accelerate RSA modular

exponentiation operation,” 2018 IEEE Long Isl. Syst. Appl. Technol. Conf.

LISAT 2018, pp. 1–6, 2018, doi: 10.1109/LISAT.2018.8378036.

[24] E. Ochoa-Jimenez, L. Rivera-Zamarripa, N. Cruz-Cortes, and F. Rodriguez-

http://www.educba.com/rsa-algorithm/
http://www.educba.com/rsa-algorithm/
http://www.geeksforgeeks.org/security-
http://www.geeksforgeeks.org/security-

52

Henriquez, “Implementation of RSA Signatures on GPU and CPU

Architectures,” IEEE Access, vol. 8, pp. 9928–9941, 2020, doi:

10.1109/ACCESS.2019.2963826.

[25] Q. Hu, M. Duan, Z. Yang, S. Yu, and B. Xiao, “Efficient Parallel Secure

Outsourcing of Modular Exponentiation to Cloud for IoT Applications,” IEEE

Internet Things J., vol. 8, no. 16, pp. 12782–12791, 2021, doi:

10.1109/JIOT.2020.3029030.

[26] P. Lara, F. Borges, R. Portugal, and N. Nedjah, “Parallel modular

exponentiation using load balancing without precomputation,” J. Comput. Syst.

Sci., vol. 78, no. 2, pp. 575–582, 2012, doi: 10.1016/j.jcss.2011.07.002.

[27] A. Bhattacharjya, X. Zhong, and X. Li, “A lightweight and efficient secure

hybrid rsa (shrsa) messaging scheme with four-layered authentication stack,”

IEEE Access, vol. 7, no. 5, pp. 30487–30506, 2019, doi:

10.1109/ACCESS.2019.2900300.

[28] R. Abid et al., “An optimised homomorphic CRT-RSA algorithm for secure and

efficient communication,” Pers. Ubiquitous Comput., 2021, doi:

10.1007/s00779-021-01607-3.

[29] K. Venkata Reddy, C. Simranjeet Singh, V. Desalphine, and D. Selvakumar, “A

Low Latency Montgomery Modular Exponentiation,” Procedia Comput. Sci.,

vol. 171, pp. 800–809, 2020, doi: 10.1016/j.procs.2020.04.087.

[30] G. Sassaw, C. J. Jiménez, and M. Valencia, “High radix implementation of

Montgomery multipliers with CSA,” Proc. Int. Conf. Microelectron. ICM, pp.

315–318, 2010, doi: 10.1109/ICM.2010.5696148.

[31] S. D. Thabah, M. Sonowal, R. U. Ahmed, and P. Saha, “Fast and Area Efficient

Implementation of RSA Algorithm,” Procedia Comput. Sci., vol. 165, no. 2019,

pp. 525–531, 2019, doi: 10.1016/j.procs.2020.01.024.

of,” Implementation and Design ت صم يم وت ن فيذ نماظ م ُ لا قح ة شمسي ة م ُ تط ور“ Of, I. [32]

2020. 0–70, pp. 6, no. 67, vol.

[33] A. F. Tenca and Ç. K. Koç, “A scalable architecture for modular multiplication

based on Montgomery’s algorithm,” IEEE Trans. Comput., vol. 52, no. 9, pp.

1216–1222, 2003, doi: 10.1109/TC.2003.1228516.

[34] M. Knežević, F. Vercauteren, and I. Verbauwhede, “Faster interleaved modular

multiplication based on Barrett and Montgomery reduction methods,” IEEE

Trans. Comput., vol. 59, no. 12, pp. 1715–1721, 2010, doi:

53

10.1109/TC.2010.93.

[35] Synopsys, “Design Compiler User Guide,” no. December, pp. 1–465, 2010,

[Online]. Available:

http://acms.ucsd.edu/_files/dcug.pdf%5Cnpapers2://publication/uuid/479A4C

81-9E9B-4EDE-8CD5-AB9F12130421.

[36] P. L. Montgomery, “Modular multiplication without trial division,” undefined,

vol. 44, no. 170, pp. 519–521, 1985, doi: 10.1090/S0025-5718-1985-0777282-

X.

[37] A. Nadjia, A. Mohamed, and I. Mohamed, “Montgomery modular

exponentiation on FPGA,” Proc. Int. Conf. Microelectron. ICM, 2012, doi:

10.1109/ICM.2012.6471439.

[38] S. Yeşil, A. N. Ismailoǧlu, Y. C. Tekmen, and M. Aşkar, “Two fast RSA

implementations using high-radix montgomery algorithm,” Proc. - IEEE Int.

Symp. Circuits Syst., vol. 2, 2004, doi: 10.1109/ISCAS.2004.1329332.

