OPTIMIZATION OF HYBRID FUZZY PROPORTIONAL DERIVATIVE CONTROLLER USING PSO FOR SINGLE AXES GIMBAL SYSTEM

ABD ALATI ALHADI MOHAMMED AHMED

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechatronics and Automatic Control)

> School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > SEPTEMBER 2022

DECLARATION

I declare that this project report entitled "Optimization of Hybrid Fuzzy Proportional Derivative Controller Using PSO for Single Axes Gimbal System" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	:	FREE
Name	:	ABD ALATI ALHADI MOHAMMED AHMED
Date	:	22 SEPTEMBER 2022

DEDICATION

This thesis is dedicated to my father, who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my mother, who taught me that even the largest task can be accomplished if it is done one step at a time.

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Dr. Sophan Wahyudi Nawawi, for encouragement, guidance, and support.

I am also indebted to University Technology Malaysia (UTM) for providing me with a conducive learning environment and the necessary facilities to successfully complete my work.

ABSTRACT

A gimbal is a device that can stabilize payload or an object around a single or several axes of rotation. Inertially stabilized platform is another term for a gimbal (ISP). The gimbal mechanism is divided into two categories. The first part is the scanning application. The second group is tracking application. The sensor axis should be accurately focused on target point for a suitable gimbal system. Tuning process for controllers is the critical issues. Since, manual tuning considered as a time consuming and can't achieve the best system performance, Particle Swarm Optimization (PSO) method has been used to optimize the Proportional Integral Derivative (PID) and Fuzzy Logic Controller (FLC). Manual tuning FLC has achieved a better performance than Ziglor Niclos PID controller. The best performance has been achieved I when utilizing the FLC scaling factors with optimized Proportional Derivative (PD) controller. The results were satisfying and the objective of this project has been achieved, where the settling time was equal to 0.2 seconds, zero overshoot and zero steady state error.

ABSTRAK

Gimbal ialah sebuah alat yang boleh menstabilkan beban bayar ataupun satu objek pada satu ataupun beberapa paksi putaran. Platform terstabil secara inertia ialah satu lagi istilah untuk gimbal (Inertially Stabilised Platform - ISP). Mekanisme gimbal terbahagi kepada dua kategori. Bahagian pertama ialah aplikasi pengimbasan. Kumpulan kedua ialah aplikasi penjejakan. Paksi penderia perlu ditumpukan dengan tepat pada titik sasaran untuk satu sistem gimbal yang sesuai. Proses penalaan untuk alat-alat kawalan ialah isu kritikal. Oleh sebab penalaan manual dianggap memakan masa dan tidak mampu mencapai prestasi sistem yang terbaik, kaedah Pengoptimaan Kawanan Zarah (Particle Swarm Optimisation - PSO) telah digunakan untuk mengoptimumkan pengawal Berkadar-Kamiran-Terbitan (Proportional-Integral-Derivative - PID) dan Logik Kabur (Fuzzy Logic - FLC). Penalaan FLC secara manual telah mencapai prestasi lebih baik berbanding pengawal PID Ziegler-Nichols. Prestasi terbaik dicapai apabila faktor penskalaan FLC digunakan dengan pengawal Berkadar-Terbitan (PD) teroptimum. Hasilnya memuaskan dan matlamat projek ini telah pun tercapai di mana masa penetapan bersamaan 0.2 saat tanpa pelampauan dan tanpa ralat keadaan mantap.

TABLE OF CONTENTS

TITLE

Ľ	DECLARATION		
A	ACKNOWLEDGEMENT		
A	ABSTRACT		
A	ABSTRAK		
Т	[ABL]	E OF CONTENTS	vii
L	LIST OF TABLES		ix
L	LIST OF FIGURES		X
L	LIST OF ABBREVIATIONS		xii
L	LIST (OF APPENDICES	xiii
CHAPTER	1	INTRODUCTION	1
1	.1	Background Study	1
1	.2	Problem Statement	2
1	.3	Objectives	2
1	.4	Scope of The Project	3
1	.5	Organization of this Report	3
CHAPTER	2	LITERATURE REVIEW	3
2	2.1	Introduction	3
2	2.2	Fuzzy Logic Controller (FLC)	3
2	2.3	Fuzzy Controller and Tuning Methods	5
		2.3.1 Introduction:	5
		2.3.2 Particle Swarm Optimization method (PSO)	6
		2.3.3 Genetic Algorithm (GA)	6
2	2.4	Summary Table	8
2	2.5	Chapter Summary	11

CHAPTER 3	RESEARCH METHODOLOGY	12
3.1	Introduction	12
3.2	Gimbal System Design	13
	3.2.1 System Description	13
	3.2.2 Mathematical Model	13
3.3	Controller Design	16
	3.3.1 Introduction	16
	3.3.2 ZN PID Controller Design	16
	3.3.3 Fuzzy Controller Design	17
3.4	Particle swarm optimization method (PSO)	21
3.5	Cost function	
3.6	Optimized PID controller	22
3.7	Optimized Fuzzy logic controller	22
3.8	Chapter Summary	24
CHAPTER 4	RESULTS AND DISCUSSION	25
4.1	Introduction	25
4.2	Simulation Results	25
	4.2.1 System response with ZN PID controller	25
	4.2.2 System response with FLC	27
	4.2.3 FLC optimization and System response	28
	4.2.4 System response with optimized FLC	30
	4.2.5 Comparison and discussion	34
CHAPTER 5	CONCLUSION	36
5.1	Summary	36
5.2	Future work	36
REFERENCES		37
APPENDIX		40 - 41

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Literature Review Summary	8
Table 3.1	Gimbal system parameters	15
Table 3.2	FLC design specification	18
Table 3.3	The rules of FLC	20
Table 4.1	ZN PID performance in Simulink	27
Table 4.2	Performance FLC (Initial Angle = 1 rad) in Simulink	28
Table 4.3	Performance of optimized PID (Initial Angle = 1 rad) in Simulink	30
Table 4.4	Performance of optimized FL and PD controllers (Initial Angle = 1 rad) in Simulink	34
Table 4.5	comparison Performance of the controllers in Simulink	35

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
Figure 1.1	Two axes gimbal	2
Figure 2.1	Architecture of Fuzzy Logic Controller	5
Figure 2.2	Basic Flow Chart of Genetic Algorithm [18].	7
Figure 3.1	Methodology Flowchart	12
Figure 3.2	General diagram of gimbal system	13
Figure 3.3	Block diagram DC motor	14
Figure 3.4	Simulation of gimbal System	15
Figure 3.5	Simulation of gimbal System with PID controller	16
Figure 3.6	The system response at Stability Limit	17
Figure 3.7	Simulation of gimbal System with fuzzy logic controller	17
Figure 3.8	Input Error MFs	18
Figure 3.9	Input Derivative Error MFs	19
Figure 3.10	Output MFs	19
Figure 3.11	Mamdani FLC Structure	20
Figure 3.12	PSO flowchart	21
Figure 3.13	System model with optimized PID.	22
Figure 3.14	System model with optimized FLC scaling factors.	23
Figure 3.15	System model with optimized FLC SCFs and PD parameters	23
Figure 4.1	Gimbal System With PID	26
Figure 4.2	ZN PID Angle Response in Simulink	26
Figure 4.3	Gimbal System with FLC	27
Figure 4.4	Angle Response with FLC	28
Figure 4.5	Gimbal system with optimized PID	29
Figure 4.6	ISE cost function for optimized PID	29
Figure 4.7	Optimized PID Angle Response in Simulink	30

Figure 4.8	Gimbal system with optimized FLC	31
Figure 4.9	ISE cost function for optimized FLC	31
Figure 4.10	Angle response with optimized FLC	32
Figure 4.11	Gimbal System with optimized FL and PD controllers	33
Figure 4.12	ISE cost function for optimized FL and PD controllers	33
Figure 4.13	Angle response with optimized FL and PD controllers	34
Figure 4.14	system responses comparison	35

LIST OF ABBREVIATIONS

DOF	-	Degree of Freedom
FIS	-	Fuzzy Inference System
FLC	-	Fuzzy Logic Controller
GA	-	Genetic Algorithm
MF	-	Membership Function
PSO	-	Particle Swarm Optimization
PID	-	Proportional-Integral-Derivative
SISO	-	Single Input Single Output
SMC	-	Sliding Mode Controller
T-S FLC	-	Takagi Sugeno Fuzzy Logic Controller
ZN	-	Ziglor Niclos
PD	-	Proportional-Derivative

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Appendix A

Gantt Chart

40

CHAPTER 1

INTRODUCTION

1.1 Background Study

A gimbal is a device that can stabilize payload or an object around a single or several axes of rotation. A sensor, such as a camera, is usually the payload for a gimbal, but it might also be a missile, radar, gun, or laser. A two-axis gimbal can steady a payload along the yaw (azimuth) and pitch (elevation) axes. Inertially stabilized platform is another term for a gimbal (ISP). Many studies have recently been conducted on the modelling and control of gimbal system. [1] The gimbal mechanism is divided into two categories. the first part is the scanning application. The gimbal is set up to point at the desired coordinates. The second group is the tracking application. The sensor axis should be accurately focused on target point for a suitable gimbal system. [2] [3]

Single axis gimbal system consists of a DC motor to rotate the payload of the gimbal and position sensor to measure the angle position of the gimbal. Many controllers have been designed for controlling the gimbal. Linear controllers provide good performance when the mass of payload of the gimbal is not very big. However, if the payload's inertia is big linear controllers don't perform very well for stabilizing the gimbal. Intelligence controllers provide excellence result. However, it lacks of the simplicity of designing. Two axes gimbal system is the most popular kind of gimbals, the two axes gimbal is very similar to the single axes interim of designing and controlling. Basically, a two axes gimbal consists of two single gimbals which are inner and outer gimbal. Some studies consider the coupling relation between the inner and outer loop, for making the designing easier some researchers don't consider any coupling effecting. Figure 1.1 shows the tow axes gimbal. [1] [4] [5]

Figure 1.1 Two axes gimbal

1.2 Problem Statement

The single-axis gimbaled platform suffers from the slow response and lack of accuracy while remaining stable throughout target tracking. It is well known that the Fuzzy controller used to improve the performance of the system depends upon the tuning of the fuzzy membership functions or rule base of fuzzy system or scaling factors for fuzzy inputs and outputs. However, manual tuning is not sufficient and time consuming. Therefore, using optimization method to tune these parameters is very important to optimize the system performance and overcome all the tuning problems.

1.3 Objectives

The project objectives are as follows:

- 1. To design fuzzy logic controller for single-axis gimbal system.
- 2. To optimize FLC using particle swarm optimization method.
- To test the controller performance and compare it with PID controller using MATLAB software.

1.4 Scope of Project

The followings describe the scope of the project:

- The controllers are to be designed based on PID and fuzzy logic.
- To develop the controller and test the performance using MATLAB SIMULINK.
- To use PSO method to optimize the system performance.
- To develop PSO code in MATLAB software.

1.5 Organization of this Report

The subsequent chapters are organized as follows; Chapter 2 reviews relevant literature in the field of gimbal system as well as some fuzzy and other controllers that have been used. Chapter 3 discusses modelling of the gimbal system and the methodology used in the design of PID and fuzzy logic controllers and particle swarm optimization method to optimize the controllers which are used in this project. This is followed by Chapter 4 which highlights the simulation and experimental results. Finally, chapter 5 will highlight the summary of the project and future work.

REFERENCES

- Jitendra Sharma, Yogesh V. Hote, Rajendra Prasad, Robust PID Control of Single-axis Gimbal Actuator via Stability Boundary Locus,IFAC-PapersOnLine,Volume 53, Issue 1,2020.
- [2] M. Kumar and Y. V. Hote, "A Novel PIDA Controller Design for a Single-Axis Gimbal System," 2020 IEEE 17th India Council International Conference (INDICON), 2020, pp. 1-6, doi: 10.1109/INDICON49873.2020.9342153.
- [3] M. H. Ahmad, K. Osman, M. F. M. Zakeri and S. I. Samsudin, "Mathematical Modelling and PID Controller Design for Two DOF Gimbal System," 2021 IEEE 17th International Colloquium on Signal Processing & Its Applications (CSPA), 2021, pp. 138-143, doi: 10.1109/CSPA52141.2021.9377274.
- [4] V. Obiora and I. E. Achumba, "Adaptive control of Aerial vehicle gimbal using fuzzy-PID compensator," 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), 2017, pp. 451-456, doi: 10.1109/NIGERCON.2017.8281914.
- [5] B. J. Smith, W. J. Schrenk, W. B. Gass and Y. B. Shtessel, "Sliding mode control in a two-axis gimbal system," 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403), 1999, pp. 457-470 vol.5, doi: 10.1109/AERO.1999.790222
- [6] Zadeh, L.A., *Fuzzy sets*. Information and Control, 1965. 8(3): p. 338-353.
- [7] Madhubala, T. K., et al. "Development and tuning of fuzzy controller for a conical level system." International Conference on Intelligent Sensing and Information Processing, 2004. Proceedings of. IEEE, 2004.
- [8] Lee, Chuen-Chien. "Fuzzy logic in control systems: fuzzy logic controller.
 I." IEEE Transactions on systems, man, and cybernetics 20.2 (1990): 404-418.
- [9] Patyra, Marek J., Janos L. Grantner, and Kirby Koster. "Digital fuzzy logic controller: design and implementation." IEEE Transactions on Fuzzy Systems 4.4 (1996): 439-459.
- [10] Hashim, H.B., Control of Inverted Pendulum Cart System Based on Fuzzy Logic Approach. 2013: Universiti Teknologi Malaysia, Skudai.

- [11] Z. Kovacic and S. Bogdan, Fuzzy controller design: theory and applications. CRC press, 2005.
- [12] S.-Z. He, S. Tan, F.-L. Xu, and P.-Z. Wang, "Fuzzy self-tuning of PID controllers," Fuzzy sets and systems, vol. 56, no. 1, pp. 37-46, 1993.
- Kennedy, James, and Russell Eberhart. "*Particle swarm optimization*." Proceedings of ICNN'95-international conference on neural networks. Vol. 4. IEEE, 1995.
- [14] Wang, Dongyun, and Guan Wang. "Parameters optimization of fuzzy controller based on improved particle swarm optimization." 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 2008.
- [15] K. F. Man, K.S. Tang, S. Kwong, "Genetic Algorithms: Concepts and Applications", IEEE Transactions on Industrial Electronics, Vol. 43, No. 5, October 1996.
- [16] L. Haldurai, T. Madhubala, R. Rajalakshmi, "A Study on Genetic Algorithm and its Applications", International Journal of Computer Sciences and Engineering, Vol-4, Issue-10, ISSN-2347-2693.
- [17] Yang, Shichun, et al. "Optimization of fuzzy controller based on genetic algorithm." 2010 International Conference on Intelligent System Design and Engineering Application. Vol. 2. IEEE, 2010.
- [18] Immanuel, Savio D., and Udit Kr Chakraborty. "Genetic Algorithm: An Approach on Optimization." 2019 International Conference on Communication and Electronics Systems (ICCES). IEEE, 2019.
- [19] S. A. Rahman, Zain-Aldeen. (2017). Design a Fuzzy Logic Controller for Controlling Position of D.C. Motor. 10.13140/RG.2.2.15206.88646.
- [20] Abdalgader,Zuzu Osman Elamin .Servo Motor Position Control Using Fuzzy Controller /Zuzu Osman Elamin Abdalgader;Abdallah Salih Ali .-Khartoum: Sudan University of Science and Technology, College of Science,2015
- [21] R. Caponetto and M. G. Xibilia, "Fractional order PI control of a gimbal platform," 2017 European Conference on Circuit Theory and Design (ECCTD), 2017, pp. 1-4, doi: 10.1109/ECCTD.2017.8093271.
- [22] A. S. Kori, C. M. Ananda and T. S. Chandar, "Robust control of single axis gimbal platform for micro air vehicles based on uncertainty and disturbance

estimation," 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE), 2016.

- [23] N. Elias and N. M. Yahya, "Comparison of DC Motor Position Control Simulation using MABSA-FLC and PSO-FLC," 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA), 2019,
- [24] Das, Debasmit & Ghosh, Arka. (2013). Algorithm for a PSO Tuned Fuzzy Controller of a DC Motor. International Journal of Computer Applications. 73. 37-41. 10.5120/12731-9575.
- [25] Simi Simon, P. Rajalakshmy, 2014, Speed Control of DC Motor using PSO based Fuzzy Logic Controller, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 03, Issue 02 (February 2014).
- [26] Ghareaghaji, Ali. (2015). A Comparison between Fuzzy-PSO Controller and PID-PSO Controller for Controlling a DC Motor. Bulletin of Electrical Engineering and Informatics. 4. 10.11591/eei.v4i2.328.
- [27] Nhu, Huynh & Khoat, Xuan. (2019). Tuning Parameters of Fuzzy Logic Controller using PSO for Maglev System. International Journal of Computer Applications. 178. 10-15. 10.5120/ijca2019919009.