
N-GRAM FEATURE EXTRACTION AND NAÏVE BAYES CLASSIFIER FOR

MALWARE DETECTION USING FPGA IMPLEMENTATION

LEE MING YI

UNIVERSITI TEKNOLOGI MALAYSIA

N-GRAM FEATURE EXTRACTION AND NAÏVE BAYES CLASSIFIER FOR

MALWARE DETECTION USING FPGA IMPLEMENTATION

LEE MING YI

A project report submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JULY 2022

iv

DEDICATION

This thesis is dedicated to my father, who taught me that the best kind of

knowledge to have is that which is learned for its own sake. It is also dedicated to my

mother, who taught me that even the largest task can be accomplished if it is done

one step at a time.

v

ACKNOWLEDGEMENT

In preparing this thesis, I was in direct contact with many people,

academicians, researchers, and classmates. They all have contributed towards my basic

understanding and toward the progress that I made. Particularly, I would like to express

my sincere appreciation to my thesis supervisor Dr. Ismahani Binti Ismail, for her

comments and recommendations on this thesis. I also want to express my gratitude to

the School of Electric Engineering in UTM and to all its member’s staff for the

guidance that they gave to me, and above all to my dear family and friends for

supporting me all the time during my study.

vi

ABSTRACT

Nowadays malicious software, or commonly known as malwares, play a very

critical role in almost every network intrusion attack that attempts to harm the

connected devices. Thus, installing malware detection systems to protect the network

environment has become even more imperative. Naïve Bayes classifier is a

probabilistic supervised machine learning algorithm that can be launched on most

general-purpose devices to solve a wide range of classification problems, including

malware detection. Apart from the classifier, a good feature extractor is important to

improve the performance and reliability of the classifier model. However, when it

comes to real time applications, the general-purpose devices are limited in terms of

their computational throughput. Therefore, the aim of this project is to implement n-

gram feature extractor and Naïve Bayes classifier on hardware environments. To

improve the throughput and latency of the malware detection, parallel processing

capability of field-programmable gate array (FPGA) has been exploited whereby

multiple processing units have been designed for the inference module to be

implemented on the hardware. Besides, the inference module is designed to be

pipelined with six stages. Other than that, hardware-friendly algorithms which have

implemented base 2 logarithm transformation and floating-point to fixed-point

conversion are used in this study. From the result, both software and hardware designs

have obtained similar accuracy of 99.18% on the test dataset. Besides, it is found out

that the higher number of parallel processing units, n in this design leads to higher

throughput, resource utilization, power consumption, and energy efficiency for

malware detection. Hardware design with n = 62 is the optimal design in this project,

as it has achieved the highest value of throughput and energy efficiency at the same

time.

vii

ABSTRAK

Pada masa ini, perisian hasad memainkan peranan yang sangat penting dalam

hampir setiap serangan pencerobohan rangkaian yang cuba merosakkan peranti yang

disambungkan. Oleh itu, pemasangan sistem pengesanan perisian hasad untuk

melindungi persekitaran rangkaian menjadi semakin penting. Pengelas Naïve Bayes

merupakan algoritma pembelajaran mesin diselia kebarangkalian yang boleh

dilancarkan pada kebanyakan peranti untuk menyelesaikan pelbagai masalah

pengelasan, termasuk pengesanan perisian hasad. Selain pengelas, pengekstrak ciri

yang baik adalah penting untuk meningkatkan prestasi dan kebolehpercayaan model

pengelas. Walau bagaimanapun, peranti tujuan am adalah terhad dari segi daya

pengiraan apabila bincang mengenai aplikasi masa nyata. Oleh itu, projek ini

bertujuan untuk melaksanakan pengekstrak ciri n-gram dan pengelas Naïve Bayes

pada FPGA. Untuk meningkatkan daya pemprosesan dan kependaman pengesanan

perisian hasad, keupayaan pemprosesan selari FPGA akan dieksploitasi dimana

berbilang unit pemprosesan akan direka bentuk untuk modul inferens dilaksanakan

pada perkakasan. Selain itu, modul inferens yang setara akan direka bentuk dengan

seni bina talian paip 6-tahap. Tambahan pula, algoritma mesra perkakasan yang

telah melaksanakan transformasi logaritma asas dua dan penukaran titik terapung

kepada titik tetap telah digunakan dalam kajian ini. Daripada hasilnya, kedua-dua

reka bentuk perisian dan perkakasan telah memperoleh ketepatan yang sama

sebanyak 99.18% pada set data ujian. Selain itu, kajian ini menunjukkan bahawa

bilangan unit pemprosesan selari, n yang lebih tinggi membawa kepada daya

pemprosesan, penggunaan sumber, penggunaan kuasa dan kecekapan tenaga yang

lebih tinggi untuk pengesanan perisian hasad. Reka bentuk perkakasan dengan n =

62 adalah reka bentuk optimum dalam projek ini, kerana ia telah mencapai nilai

daya pemprosesan dan kecekapan tenaga tertinggi pada masa yang sama.

viii

TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Background 1

1.2 Problem Statement 2

1.3 Research Objectives 3

1.4 Scope 4

1.5 Thesis Organization 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Malware Detection Techniques and Algorithm 5

2.2.1 Malware Analysis 5

2.2.2 Feature Extraction 6

2.2.3 Classification 7

2.3 Naïve Bayes 7

2.4 N-gram 8

2.5 Field Programmable Gate Array (FPGA) 9

2.6 Related Works 11

2.7 Limitation & Research Gap 14

ix

2.8 Chapter Summary 16

CHAPTER 3 RESEARCH METHODOLOGY 19

3.1 Introduction 19

3.2 Dataset Pre-processing 20

3.2.1 Dataset Division 20

3.2.2 Feature Extraction 21

3.2.3 Feature Selection 22

3.3 Software Implementation 23

3.3.1 Hardware Friendly Algorithm 24

3.3.2 Training Part 27

3.3.3 Inference Part 29

3.3.4 Software Implementation Evaluation 29

3.4 Hardware Implementation of Training Algorithm 30

3.4.1 Count Module 31

3.4.2 Fitting Module 32

3.4.3 Training Module Datapath Unit 32

3.5 Hardware Implementation of Inference Algorithm 34

3.5.1 Fetch Module 35

3.5.2 Extract Module 36

3.5.3 Decode Module 36

3.5.4 LUT Module 37

3.5.5 Accumulate Module 38

3.5.6 Predict Module 39

3.5.7 Inference Module Datapath Unit 40

3.6 Design Validation 41

3.7 Design Space Exploration 41

3.8 Project Management 43

3.9 Chapter Summary 44

CHAPTER 4 RESULTS AND DISCUSSION 45

4.1 Introduction 45

4.2 Accuracy Evaluation 45

x

4.3 Performance Comparison 47

4.4 Chapter Summary 50

CHAPTER 5 CONCLUSION 51

5.1 Project Accomplishment 51

5.2 Future Works 52

REFERENCES 53

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 N-gram features for different value of n=1,2,3,4 [16] 9

Table 2.2 Summary of literature review 14

Table 3.1 Vectorized dataset 24

Table 3.2 Number of parallel processing unit vs performance 42

Table 4.1 Confusion matrix of malware classification result on

software and hardware platforms 46

Table 4.2 Performance of FPGA inference for different number of

parallel processing unit 47

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1 Total complaints and amount of money lost over the years

between 2016 and 2020 recorded by IC3 [4] 1

Figure 2.1 FPGA fabric structure [23] 10

Figure 2.2 Simple comparison of CPUs, GPUs, FPGAs, and ASICs

[22] 10

Figure 2.3 Architectural overview of Xilinx Zynq-7000 [24] 11

Figure 3.1 Research methodology overview 19

Figure 3.2 Payload sample in hexadecimal format 21

Figure 3.3 Byte 4-gram features extracted from training dataset 21

Figure 3.4 Feature vectors of training dataset 23

Figure 3.5 Base 2 logarithmic lookup table 27

Figure 3.6 Training model 30

Figure 3.7 Block diagram of count module 31

Figure 3.8 Block diagram of fitting module 32

Figure 3.9 Block diagram of training module datapath unit 33

Figure 3.10 Inference model 34

Figure 3.11 Stages in inference model 34

Figure 3.12 Block diagram of fetch module 35

Figure 3.13 Block diagram of extract module 36

Figure 3.14 Block diagram of decode module 37

Figure 3.15 Block diagram of LUT module 38

Figure 3.16 Block diagram of accumulate module 39

Figure 3.17 Block diagram of predict module 39

Figure 3.18 Block diagram of inference module datapath unit 40

Figure 3.19 Gantt Chart FYP 1 43

Figure 3.20 Gantt Chart FYP 2 43

xiii

Figure 4.1 Predicted classes and logarithm probabilities obtained by

software and hardware designs for the first 12 test data 46

Figure 4.2 Graph of resource utilization comparison with n = 2 48

Figure 4.3 Graph of performance comparison with n = 2 49

xiv

LIST OF ABBREVIATIONS

APIs - Application Programming Interfaces

ASIC - Application-Specific Integrated Circuit

BN - Bayesian Network

BRAM - Block Random Access Memory

CNN - Convolutional Neural Network

CPD - Critical Path delay

CPU - Central Processing Unit

DSP - Digital Signal Processing

FF - Flip Flop

FN - False Negative

FP - False Positive

FIFO - First-In First-Out

FPGA - Field-Programmable Gate Array

IO - Input-output

GPU - Graphics Processing Unit

IC3 - Internet Crime Complaint Center

IDS - Intrusion Detection Systems

IG - Information Gain

J48 - C4.5 Decision Tree Variant

KNN - K-Nearest Neighbors

LMT - Logistic Model Trees

LUT - Lookup Table

MMCM - Mixed-Mode Clock Managers

MP - Multilayer Perceptron

NB - Naïve Bayes

NBC - Naïve Bayes Classifier

NLP - Natural Language Processing

PL - Programmable Logic

PLL - Phase-Locked Loop

PS - Processor Subsystem

xv

PU - Processing Unit

RAM - Random Access Memory

RF - Random Forest Tree

ROM - Read-Only Memory

SIMD - Single Instruction Multiple Data

SLR - Simple Logistic Regression

SMO - Sequential Minimal Optimization

SoC - System on a Chip

SPI - Serial Peripheral Interface

SRAM - Static Random Access Memory

SVM - Support Vector Machine

TN - True Negative

TP - True Positive

1

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Malicious software, or more commonly known as malware, is any computer

program that can lead to damage on computer hosts. Some classes of malware include

all sorts of trojan horses, worms, viruses, rootkits, spyware, and scareware [1]. Most

common action from the malware is it will replicate speedily by contaminating any

system or any host files inside the computer. Besides, it has the capability to multiply

innumerably to generate new obfuscated virus code [2]. Based on the internet crime

complaint center (IC3) that was created in 2000 [3], up to 4,883,231 complaints have

been received by the center since its creation. From those reported, up to 49,711 reports

have been received in its first year of operation. Further details about the numbers of

complaints and the amount of money lost by such incidents are presented in [4].

According to the United States council of Economic Advisers, malware has cost the

U.S economy between $57 billion and $109 billion USD just in 2016 [5].

Figure 1.1 Total complaints and amount of money lost over the years between

2016 and 2020 recorded by IC3 [4]

2

The demand for reliable and accurate malware detection techniques is high to

get rid of the relentless attacks. Conventional detection using behavioral, anomaly, and

rules-based pattern detections for intrusion detection system (IDS) is unable to provide

efficient detection as the malware keeps changing in time. The system needs to

frequently increase the malware database so that it can keep up to date with the latest

malware samples. However, this will lead to longer scanning time as the database is

greater in size, leading to performance drop in terms of throughput [6]. Machine

learning classifier such as Naïve Bayes algorithm is a better choice as it is widely used

to deal with large volumes of data and capable of producing good results when it comes

to Natural Language Processing (NLP) tasks such as sentimental analysis or malware

detection. It is a fast classification algorithm and not complicated to understand.

Meanwhile, n-gram feature extractor is commonly used together with machine

learning classifier, which serves to extract the input features for the NLP task.

This paper is discussing the implementation of machine learning using Naïve

Bayes classifier and n-gram feature extractor on FPGA. The hardware design will be

improved by exploring the hidden concurrency and mapping it into parallel hardware

using pipeline and Single Instruction Multiple Data (SIMD) approach. Then, trade-off

analysis on throughput, resources usage, power consumption, and energy efficiency

will be carried out with different numbers of parallel processing units on FPGA to

obtain the optimum design. Ultimately, an FPGA with malware detection capability

will be produced, which allows it to work smoothly in the background to protect the

connected devices as a standalone device with better performance compared to CPU.

1.2 Problem Statement

Nowadays, processing the data to ensure safe connection is not the only

challenge that we have, as we also aim to improve the user experience by securing the

connection with a minimum delay. But as we know, in general computing systems the

computing resources were shared among several applications, thus the performance of

the algorithm in terms of the overall speed will be affected as the CPU resource is

being shared. Due to the CPU limitation, even if the target algorithm is considered as

3

a lite algorithm in terms of its computing time, it is still not efficient enough to handle

the real time processing of data especially when the dataset is big enough. Besides,

CPUs are optimized for sequential processing, which means they lack sufficient

support for parallelism, and this limits their high-speed processing capabilities. Thus,

FPGA is a better choice as it inherits parallelism which allows the algorithm to be

inferenced in parallel and improve the throughput performance.

Although FPGA can exploit its parallel processing capability to enhance the

inference performance and improve the throughput, it will also lead to higher resource

utilization and power consumption at the same time. Therefore, tradeoff analysis is

required so that optimum design can be selected to fit the purpose. This means that

blindly pursuing FPGA design with more parallel processing units might not be a wise

choice as resource utilization and power consumption are also the key considerations

when designing the hardware. Besides, not all parallelization can result in speed-up.

As there are more threads, parallel slowdown can occur as communication time on

each other might be increased and longer time is needed to wait for resource access

[7]. Therefore, design space exploration is needed so that more insight can be explored

regarding the number of parallel processing units and its impact towards the maximum

frequency, latency, resource utilization, and power consumption.

1.3 Research Objectives

The objectives of the research are:

(a) To implement n-gram feature extractor and Naïve Bayes classifier as FPGA

hardware design for malware detection.

(b) To validate the correctness functionality of the implemented hardware design

with the software version in terms of accuracy.

(c) To compare the performance of proposed design in terms of throughput,

resources utilization, power consumption, and energy efficiency when

different numbers of parallel processing units are used on FPGA.

4

1.4 Scope

For this project, the scopes covered are as follows:

• Proving whether Naïve Bayes algorithm is efficient in identifying malicious

software or not is beyond the scope.

• The dataset that will be used in training and testing of malware detection is

being processed from the packet payload.

• Supervised machine learning will be used for two-class malware detection.

• Implementation of n-gram feature extractor on FPGA is for the inference part

only whereas the Naïve Bayes algorithm will be implemented for both training

and inference part.

• The version of Vivado tool involved in this experiment for design, synthesize,

and simulate the project is 2019.1, whereas Xilinx Zynq-7000 FPGA board is

used as the target device in Vivado.

• The computer device that carries out the whole experiment including the

benchmarking business follows these specifications: Intel(R) Core (TM) i7-

1185G7, 3.00 GHz, 16 GB RAM, 7.8 GB Intel(R) Iris(R) Xe Graphics, with

64-bit version of Windows 10.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews about the malware

background, Naïve Bayes algorithm, n-gram, and FPGA, as well as the recent similar

works that were addressed by other researchers before. Chapter 3 explains the

methodology used in this project to implement the design. Chapter 4 describes the

results and discussion. Chapter 5 summarizes the proposed works.

53

REFERENCES

[1] E. G. Dada, J. S. Bassi, Y. J. Hurcha and A. H. Alkali, "Performance Evaluation

of Machine Learning Algorithms for Detection and Prevention of Malware

Attacks," IOSR Journal of Computer Engineering, vol. 21, no. 3, pp. 18-27,

2019.

[2] P. Szor, The Art of Computer Virus Research and Defense, Addison-Wesley,

2005.

[3] "The FBI’s Internet Crime Complaint Center (IC3) Marks Its 20th Year," FBI

National Press Office, 8 May 2020. [Online]. Available:

https://www.fbi.gov/news/pressrel/press-releases/the-fbis-internet-crime-

complaint-center-ic3-marks-its-20th-year. [Accessed 31 Jan 2022].

[4] "Internet Crime Report 2020," 2021. [Online]. Available:

https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf.

[Accessed 31 Jan 2022].

[5] K. Arunlal, "Impact of Malware in Modern Society," International Journal of

Scientific Research and Engineering Development, vol. 2, no. 3, pp. 593-600,

2019.

[6] X. Zhang, A. Ramachandran, C. Zhuge, D. He, W. Zuo, Z. Cheng, K. Rupnow

and D. Chen, "Machine learning on FPGAs to face the IoT revolution," in 2017

IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

2017.

[7] K. Pugdeethosapol, Z. Jin, D. Rider and Q. Qiu, "Accelerating Block-Circulant

Matrix-Based Neural Network Layer on a General Purpose Computing Platform:

A Design Guideline," in FICC 2020, San Francisco, 2020.

[8] M. Christodorescu and S. Jha, "Static analysis of executables to detect malicious

patterns," in SSYM'03: Proceedings of the 12th conference on USENIX Security

Symposium, 2003.

[9] N. Miramirkhani, M. P. Appini, N. Nikiforakis and M. Polychronakis, "Spotless

Sandboxes: Evading Malware Analysis Systems Using Wear-and-Tear

Artifacts," in 2017 IEEE Symposium on Security and Privacy (SP), 2017.

54

[10] A. Souri and R. Hosseini, "A state-of-the-art survey of malware detection,"

Hum.-Centric Comput. Inf. Sci., vol. 8, no. 1, p. 3, 2018.

[11] O. A. Aslan and R. Samet, "A Comprehensive Review on Malware Detection

Approaches," IEEE Access, vol. 8, pp. 6249-6271, 2020.

[12] E. Gandotra, D. Bansal and S. Sofat, "Malware Analysis and Classification: A

Survey," Journal of Information Security, vol. 5, no. 2, 2014.

[13] B. Cakir and E. Dogdu, "Malware classification using deep learning methods,"

in ACMSE '18: Proceedings of the ACMSE 2018 Conference, 2018.

[14] M. Granik and V. Mesyura, "Fake news detection using naive Bayes classifier,"

in 2017 IEEE First Ukraine Conference on Electrical and Computer

Engineering (UKRCON), 2017.

[15] A. C. Müller and S. Guido, Introduction to Machine Learning with Python,

O'Reilly Media, Inc., 2016.

[16] A. Z. Mohd. Zuki, "FPGA implementation of naive bayes classifier for network

security," UTM Institutional Repository, 2018.

[17] I. H. Witten, E. Frank and M. A. Hall, Data Mining Practical Machine Learning

Tools and Techniques 3rd Edition, Elsevier Inc., 2011.

[18] C. M. Bishop, Pattern Recognition and Machine Learning, Springer New York,

2006.

[19] C. Eagle, The IDA Pro Book: The Unofficial Guide to the World's Most Popular

Disassembler, No Starch Press, 2008.

[20] F. S. M. Alkhafaji, W. Z. W. Hasan, M. M. Isa and N. Sulaiman, "Robotic

Controller: ASIC versus FPGA—A Review," Journal of Computational and

Theoretical Nanoscience, vol. 15, pp. 1-25, 2018.

[21] F. B. Muslin, L. Ma, M. Roozmeh and L. Lavagno, "Efficient FPGA

Implementation of OpenCL High-Performance Computing Applications via

High-Level Synthesis," IEEE Access, vol. 5, pp. pp. 2747-2762, 2017.

[22] J. Robinson, "FPGAs, Deep Learning, Software Defined Networks and the

Cloud: A Love Story Part 1," Medium, 12 Nov 2017. [Online]. Available:

https://jamal-robinson.medium.com/fpgas-deep-learning-software-defined-

55

networks-and-the-cloud-a-love-story-part-1-c685dc6b657b. [Accessed 31 Jan

2022].

[23] National Instruments Corp., "Understanding Parallel Hardware:

Multiprocessors, Hyperthreading, Dual-Core, Multicore and FPGAs," 11 Dec

2011. [Online]. Available: http://www.ni.com/tutorial/6097/en/. [Accessed 31

Jan 2022].

[24] "Zynq-7000 SoC Data Sheet: Overview(DS190)," Xilinx, Inc, 2 July 2018.

[Online]. Available: https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-

Overview. [Accessed 31 Jan 2022].

[25] L. A. Tambara, F. L. Kastensmidt, N. H. Medina, N. Added, V. A. P. Aguiar, F.

Aguirre, E. L. A. Macchione and M. A. G. Silveira, "Heavy Ions Induced Single

Event Upsets Testing of the 28 nm Xilinx Zynq-7000 All Programmable SoC,"

in 2015 IEEE Radiation Effects Data Workshop (REDW), Boston, 2015.

[26] Z. Xue, J. Wei and W. Guo, "A Real-Time Naive Bayes Classifier," IEEE

Access, vol. 8, pp. 40755-40766, 2020.

[27] Y. K. Al Hussein, "Hardware Implementation of Naive Bayes Classifier for

Malware Detection," UTM Institutional Repository, 2021.

[28] F. Zhang and T. Zhao, "Malware Detection and Classification Based on N-

Grams Attribute Similarity," in 2017 IEEE International Conference on

Computational Science and Engineering (CSE) and IEEE International

Conference on Embedded and Ubiquitous Computing (EUC), 2017.

[29] Q. Wang, Y. Li, B. Shao, S. Dey and P. Li, "Energy efficient parallel

neuromorphic architectures with approximate arithmetic on FPGA,"

Neurocomputing, vol. 221, pp. 146-158, 2017.

[30] "Capture files from Mid-Atlantic CCDC," NETRESEC, [Online]. Available:

https://www.netresec.com/?page=MACCDC. [Accessed 31 Nov 2021].

[31] "2017-08-01 - Rig EK from the HookAds Campaign Sends Dreambot,"

MALWARE-TRAFFIC-ANALYSIS.NET, [Online]. Available:

https://www.malware-traffic-analysis.net/2017/08/01/index.html. [Accessed 31

Nov 2021].

[32] "2018-08-07 - HookAds Rig EK Pushes Azorult, Azorul Pushes Smokeloader,"

MALWARE-TRAFFIC-ANALYSIS.NET, [Online]. Available:

56

https://www.malware-traffic-analysis.net/2018/08/07/index.html. [Accessed 31

Nov 2021].

[33] "The Jupyter Notebook," Jupyter, 2022. [Online]. Available: https://jupyter.org/.

[Accessed 31 Jan 2022].

