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ABSTRACT 

Nowadays malicious software, or commonly known as malwares, play a very 

critical role in almost every network intrusion attack that attempts to harm the 

connected devices. Thus, installing malware detection systems to protect the network 

environment has become even more imperative. Naïve Bayes classifier is a 

probabilistic supervised machine learning algorithm that can be launched on most 

general-purpose devices to solve a wide range of classification problems, including 

malware detection. Apart from the classifier, a good feature extractor is important to 

improve the performance and reliability of the classifier model. However, when it 

comes to real time applications, the general-purpose devices are limited in terms of 

their computational throughput. Therefore, the aim of this project is to implement n-

gram feature extractor and Naïve Bayes classifier on hardware environments. To 

improve the throughput and latency of the malware detection, parallel processing 

capability of field-programmable gate array (FPGA) has been exploited whereby 

multiple processing units have been designed for the inference module to be 

implemented on the hardware. Besides, the inference module is designed to be 

pipelined with six stages. Other than that, hardware-friendly algorithms which have 

implemented base 2 logarithm transformation and floating-point to fixed-point 

conversion are used in this study. From the result, both software and hardware designs 

have obtained similar accuracy of 99.18% on the test dataset. Besides, it is found out 

that the higher number of parallel processing units, n in this design leads to higher 

throughput, resource utilization, power consumption, and energy efficiency for 

malware detection. Hardware design with n = 62 is the optimal design in this project, 

as it has achieved the highest value of throughput and energy efficiency at the same 

time. 
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ABSTRAK 

Pada masa ini, perisian hasad memainkan peranan yang sangat penting dalam 

hampir setiap serangan pencerobohan rangkaian yang cuba merosakkan peranti yang 

disambungkan. Oleh itu, pemasangan sistem pengesanan perisian hasad untuk 

melindungi persekitaran rangkaian menjadi semakin penting. Pengelas Naïve Bayes 

merupakan algoritma pembelajaran mesin diselia kebarangkalian yang boleh 

dilancarkan pada kebanyakan peranti untuk menyelesaikan pelbagai masalah 

pengelasan, termasuk pengesanan perisian hasad. Selain pengelas, pengekstrak ciri 

yang baik adalah penting untuk meningkatkan prestasi dan kebolehpercayaan model 

pengelas. Walau bagaimanapun, peranti tujuan am adalah terhad dari segi daya 

pengiraan apabila bincang mengenai aplikasi masa nyata. Oleh itu, projek ini 

bertujuan untuk melaksanakan pengekstrak ciri n-gram dan pengelas Naïve Bayes 

pada FPGA. Untuk meningkatkan daya pemprosesan dan kependaman pengesanan 

perisian hasad, keupayaan pemprosesan selari FPGA akan dieksploitasi dimana 

berbilang unit pemprosesan akan direka bentuk untuk modul inferens dilaksanakan 

pada perkakasan. Selain itu, modul inferens yang setara akan direka bentuk dengan 

seni bina talian paip 6-tahap. Tambahan pula, algoritma mesra perkakasan yang 

telah melaksanakan transformasi logaritma asas dua dan penukaran titik terapung 

kepada titik tetap telah digunakan dalam kajian ini. Daripada hasilnya, kedua-dua 

reka bentuk perisian dan perkakasan telah memperoleh ketepatan yang sama 

sebanyak 99.18% pada set data ujian. Selain itu, kajian ini menunjukkan bahawa 

bilangan unit pemprosesan selari, n yang lebih tinggi membawa kepada daya 

pemprosesan, penggunaan sumber, penggunaan kuasa dan kecekapan tenaga yang 

lebih tinggi untuk pengesanan perisian hasad. Reka bentuk perkakasan dengan n = 

62 adalah reka bentuk optimum dalam projek ini, kerana ia telah mencapai nilai 

daya pemprosesan dan kecekapan tenaga tertinggi pada masa yang sama.
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Background 

Malicious software, or more commonly known as malware, is any computer 

program that can lead to damage on computer hosts. Some classes of malware include 

all sorts of trojan horses, worms, viruses, rootkits, spyware, and scareware [1]. Most 

common action from the malware is it will replicate speedily by contaminating any 

system or any host files inside the computer. Besides, it has the capability to multiply 

innumerably to generate new obfuscated virus code [2]. Based on the internet crime 

complaint center (IC3) that was created in 2000 [3], up to 4,883,231 complaints have 

been received by the center since its creation. From those reported, up to 49,711 reports 

have been received in its first year of operation. Further details about the numbers of 

complaints and the amount of money lost by such incidents are presented in [4]. 

According to the United States council of Economic Advisers, malware has cost the 

U.S economy between $57 billion and $109 billion USD just in 2016 [5].

Figure 1.1 Total complaints and amount of money lost over the years between 

2016 and 2020 recorded by IC3 [4] 
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The demand for reliable and accurate malware detection techniques is high to 

get rid of the relentless attacks. Conventional detection using behavioral, anomaly, and 

rules-based pattern detections for intrusion detection system (IDS) is unable to provide 

efficient detection as the malware keeps changing in time. The system needs to 

frequently increase the malware database so that it can keep up to date with the latest 

malware samples. However, this will lead to longer scanning time as the database is 

greater in size, leading to performance drop in terms of throughput [6]. Machine 

learning classifier such as Naïve Bayes algorithm is a better choice as it is widely used 

to deal with large volumes of data and capable of producing good results when it comes 

to Natural Language Processing (NLP) tasks such as sentimental analysis or malware 

detection. It is a fast classification algorithm and not complicated to understand. 

Meanwhile, n-gram feature extractor is commonly used together with machine 

learning classifier, which serves to extract the input features for the NLP task. 

This paper is discussing the implementation of machine learning using Naïve 

Bayes classifier and n-gram feature extractor on FPGA. The hardware design will be 

improved by exploring the hidden concurrency and mapping it into parallel hardware 

using pipeline and Single Instruction Multiple Data (SIMD) approach. Then, trade-off 

analysis on throughput, resources usage, power consumption, and energy efficiency 

will be carried out with different numbers of parallel processing units on FPGA to 

obtain the optimum design. Ultimately, an FPGA with malware detection capability 

will be produced, which allows it to work smoothly in the background to protect the 

connected devices as a standalone device with better performance compared to CPU. 

1.2 Problem Statement 

Nowadays, processing the data to ensure safe connection is not the only 

challenge that we have, as we also aim to improve the user experience by securing the 

connection with a minimum delay. But as we know, in general computing systems the 

computing resources were shared among several applications, thus the performance of 

the algorithm in terms of the overall speed will be affected as the CPU resource is 

being shared. Due to the CPU limitation, even if the target algorithm is considered as 
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a lite algorithm in terms of its computing time, it is still not efficient enough to handle 

the real time processing of data especially when the dataset is big enough. Besides, 

CPUs are optimized for sequential processing, which means they lack sufficient 

support for parallelism, and this limits their high-speed processing capabilities. Thus, 

FPGA is a better choice as it inherits parallelism which allows the algorithm to be 

inferenced in parallel and improve the throughput performance. 

Although FPGA can exploit its parallel processing capability to enhance the 

inference performance and improve the throughput, it will also lead to higher resource 

utilization and power consumption at the same time. Therefore, tradeoff analysis is 

required so that optimum design can be selected to fit the purpose. This means that 

blindly pursuing FPGA design with more parallel processing units might not be a wise 

choice as resource utilization and power consumption are also the key considerations 

when designing the hardware. Besides, not all parallelization can result in speed-up. 

As there are more threads, parallel slowdown can occur as communication time on 

each other might be increased and longer time is needed to wait for resource access 

[7]. Therefore, design space exploration is needed so that more insight can be explored 

regarding the number of parallel processing units and its impact towards the maximum 

frequency, latency, resource utilization, and power consumption. 

1.3 Research Objectives 

The objectives of the research are: 

(a) To implement n-gram feature extractor and Naïve Bayes classifier as FPGA 

hardware design for malware detection. 

(b) To validate the correctness functionality of the implemented hardware design 

with the software version in terms of accuracy. 

(c) To compare the performance of proposed design in terms of throughput, 

resources utilization, power consumption, and energy efficiency when 

different numbers of parallel processing units are used on FPGA. 
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1.4 Scope 

For this project, the scopes covered are as follows: 

 

• Proving whether Naïve Bayes algorithm is efficient in identifying malicious 

software or not is beyond the scope. 

• The dataset that will be used in training and testing of malware detection is 

being processed from the packet payload. 

• Supervised machine learning will be used for two-class malware detection. 

• Implementation of n-gram feature extractor on FPGA is for the inference part 

only whereas the Naïve Bayes algorithm will be implemented for both training 

and inference part. 

• The version of Vivado tool involved in this experiment for design, synthesize, 

and simulate the project is 2019.1, whereas Xilinx Zynq-7000 FPGA board is 

used as the target device in Vivado. 

• The computer device that carries out the whole experiment including the 

benchmarking business follows these specifications: Intel(R) Core (TM) i7-

1185G7, 3.00 GHz, 16 GB RAM, 7.8 GB Intel(R) Iris(R) Xe Graphics, with 

64-bit version of Windows 10. 

 

1.5 Thesis Organization 

This thesis is organized as follows. Chapter 2 reviews about the malware 

background, Naïve Bayes algorithm, n-gram, and FPGA, as well as the recent similar 

works that were addressed by other researchers before. Chapter 3 explains the 

methodology used in this project to implement the design. Chapter 4 describes the 

results and discussion. Chapter 5 summarizes the proposed works.
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