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ABSTRACT 

Wind Energy Conversion System (WECS) is a promising Renewable Energy 

Source (RES) to generate electricity closer to the consumers in the area with suitable 

wind pattern. However, the Maximum Power Point Tracking (MPPT) algorithm 

design is a challenging task due to the random and unpredictable nature of the wind. 

Therefore, an efficient MPPT controller is essential to detect, track and extract the 

maximum extractable wind power at the optimal operating region of the Wind Turbine 

(WT). Direct Power Control (DPC) MPPT analyses the electrical properties of the 

power converter’s output to track the maximum power point (MPP).  Perturb and 

Observe (P&O), and Incremental Conductance (INC) are the most commonly used 

DPC type algorithms for MPPT. P&O algorithm design is simple but the selection of 

perturbation step-size is cumbersome and affects the MPP settling time and oscillation 

significantly if it is too large or too small. The INC algorithm design has better 

performance in detecting MPP. But there is a lack of research data available on INC 

MPPT performance for WECS application which is a gap that is addressed in this 

thesis.  The objectives of this research are to design a small scale WECS using fixed 

and variable step-size P&O and INC MPPT algorithms. The design is simulated using 

the MATLAB/Simulink tool. Finally, the MPP performance of each algorithm is 

analysed and compared in terms of MPPT convergence time, oscillation and accuracy. 

The WECS design comprises a Wind Turbine (WT), a three phase Permanent Magnet 

Synchronous Generator, a full bridge diode rectifier, a DC-DC buck converter and 

MPPT controllers. The MPPT control scheme uses the relationship between the 

converter current values and generator’s electromagnetic torque by 

increasing/decreasing the duty cycle to track the optimal power point. The steady state 

and dynamic response of the MPPT algorithms is observed and analysed through 

simulation. Larger step-size has high oscillation rate at the MPP. Smaller step-size 

takes longer to reach the maximum operating point. INC and Variable step-size P&O 

MPPT technique proves to achieve better efficiency and accuracy in terms of MPP 

tracking with relatively shorter convergence duration against conventional P&O 

MPPT. MPPT efficiency increases by 13.8% and 10.6% from Conventional P&O and 

INC to 96.4% with Variable P&O at rated condition. 
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ABSTRAK 

Sistem Penukaran Tenaga Angin (WECS) adalah salah satu Sumber Tenaga Boleh 

Diperbaharui (RES) menjanjikan penjanaan elektrik yang lebih efisien untuk pengguna. 

Walau bagaimanapun, reka bentuk Penjejakan Titik Daya Maksimum (MPPT) untuk 

WECS mencabar kerana sifat angin yang rawak dan tidak dapat diramalkan. Oleh itu, 

pengawal MPPT yang berkesan sangat penting untuk mengesan, menjejak dan 

mengekstrak tenaga angin maksimum yang dapat diekstrak di kawasan operasi optimum 

Turbin Angin (WT). Direct Power Control (DPC) MPPT menganalisis sifat elektrik 

output penukar kuasa untuk mengesan Titik Kuasa Maksimum (MPP).  Perturb and 

Observe (P&O) dan Incremental Conductance (INC) adalah jenis algoritma DPC yang 

paling biasa digunakan untuk MPPT. Reka bentuk algoritma P&O adalah mudah tetapi 

pemilihan ukuran langkah gangguan adalah membebankan dan memberi kesan kepada 

masa dan ayunan MPP dengan ketara jika terlalu besar atau terlalu kecil. Reka bentuk 

algoritma INC mempunyai keupayaan ketepatan yang lebih baik dalam mengesan MPP. 

Terdapat kekurangan data penyelidikan mengenai prestasi INC MPPT untuk aplikasi 

WECS yang merupakan jurang yang ditangani dalam tesis ini.  Objektif penyelidikan ini 

dicapai melalui reka bentuk WECS skala kecil menggunakan algoritma P&O dan INC 

MPPT ukuran tetap dan berubah-ubah. Seterusnya, reka bentuk disimulasikan 

menggunakan program Matlab / Simulink. Akhirnya, prestasi MPP setiap algoritma dari 

segi masa penumpuan MPPT, ayunan dan ketepatan dianalisis dan dibandingkan dengan 

algoritma P&O MPPT ukuran tetap konvensional. Reka bentuk WECS terdiri daripada 

Turbin Angin (WT), Penjana Segerak Magnet Tetap tiga fasa, penerus ‘diode rectifier’ 

penuh, penukar ‘buck’ DC-DC dan pengawal MPPT. Skema kawalan MPPT 

menggunakan hubungan antara nilai arus penukar dan tork elektromagnetik penjana 

dengan meningkatkan atau menurunkan kitaran tugas untuk mengesan titik daya optimum. 

Keadaan stabil dan tindak balas dinamik algoritma MPPT diperhatikan dan dianalisis 

melalui simulasi. Ukuran langkah yang lebih besar mempunyai kadar ayunan yang tinggi 

di MPP. Ukuran langkah yang lebih kecil memerlukan masa yang lebih lama untuk 

mencapai titik operasi maksimum. Teknik INC dan P&O MPPT ukuran langkah yang 

berubah-ubah terbukti dapat mencapai kecekapan dan ketepatan yang lebih baik dari segi 

penjejakan MPP dengan jangka masa penumpuan yang agak pendek berbanding dengan 

MPPT P&O konvensional. P&O MPPT ukuran langkah berubah-ubah boleh mencapai 

kadar kecekapan 13.8% dan 10.6% lebih tinggi berbanding P&O konvensional dan INC. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Motivation 

Due to the fact of increasing population, the energy demand has grown rapidly 

over the years. The current non-renewable energy reserve based on fossilized 

hydrocarbon is depleting and causing harm to the environment which has direct 

consequences towards climate change. Thus, Wind Energy Conversion System 

(WECS) has gained attention as a potential and profitable alternative energy source 

around the globe to address global issues such as the greenhouse effect faced with 

fossil fuel. Net-zero energy concepts for urban high-rise buildings and sub-urban 

houses using small-scale wind turbines are being actively studied by engineers, 

technologists, and researchers. The current trend shows that small scale wind turbine 

is slowly becoming the alternate choice for urban renewable energy solution to the 

solar power system. The simplicity, versatility, and low cut-in speed capability allow 

the small scale wind energy system to be installed closer to the consumer in urban 

terrains as part of the distributed generation system. The nature of wind is 

unpredictable, chaotic, and turbulent near the ground and in urban surroundings. To 

extract the maximum possible energy from the wind, a Maximum Power Point 

Tracking (MPPT) algorithm is used to control the wind energy conversion circuitry. 

The accuracy of the power peak detection capability of the MPPT algorithm 

determines the amount of wind power being captured by the wind energy conversion 

system [1] [2]. 

Direct Power Control (DPC) MPPT algorithms such as Perturb and Observe 

(P&O) or sometimes referred to as Hill Climb Searching (HCS) in some literature, 

Incremental Conductance (INC) and Optimum Relation Based (ORB) are being 

utilized widely in renewable energy conversion systems due to their simplicity and 
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flexibility. These DPC MPPT algorithms control the wind energy conversion system 

output power directly. The MPPT algorithms under DPC that are commonly used are 

P&O and INC. The P&O MPPT algorithm is widely adopted in most wind energy 

conversion systems due to its simple power tracking methodology structure. However, 

the selection of suitable step size has direct consequences to the performance of the 

MPPT capability where a trade-off has to be made the convergence speed and accuracy 

which is determined based on the amplitude of the oscillation at the maximum power 

point. Large step-size could lead to high tracking oscillation at MPP meanwhile 

smaller step-size slows the tracking speed hence reduces the efficiency of the wind 

energy conversion system. INC MPPT algorithm is being studied widely and tested in 

photovoltaic (PV) systems in the industry due to its accurate MPP tracking capability 

and faster response to rapid wind condition changes. However, INC algorithm is much 

more complex compared to P&O and less common among the wind energy research 

community. 

Both P&O and INC algorithms are amply researched in their respective field 

of application independently, but there is very little information available on the inter-

MPPT analysis between them to understand more about their MPPT capability and to 

compare the tracking performances for the same system to determine the most optimal 

MPPT solution for small scale wind application. 

1.2 Research Background 

1.2.1 World Energy Market 

Based on NASA’s Earth Observatory data shown in Figure 1.1, the Earth’s 

surface temperature is increasing towards an alarming level due to the Greenhouse 

Gases (GHG) that disrupts Earth’s natural cooling mechanism by trapping the heat 

within the surface which is known as the Global Warming Phenomenon [3]. The 

energy industry contributes to the most GHG emission into the atmosphere as per the 

Intergovernmental Panel on Climate Change (IPCC) assessment finding [4]. The rapid 

growth in global energy demand has a direct correlation with the increase in human 

population and industrialization. Referring to statistical data shown in Figure 1.2, fossil 
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fuel dominates more than 50% of the energy market as the source of fuel to produce 

electricity [1] [5]. However, the energy transition to Renewable Energy Sources (RES) 

has started in many developed and even developing countries such as the United States, 

United Kingdom, Europe, Australia, and China as per the trend shown below. 

Figure 1.1 Global Temperature Anomaly Statistic compared to 1951 – 1980 

average [3] 

Figure 1.2 Global Electricity Generation by Fuel Source, 2015 [5] 

RES are naturally occurring energy sources that are available in abundances 

such as wind, geothermal, water, biomass, and the sun. The wind exists everywhere 

and is the resultant of dissimilarities in energy density distribution across the Earth’s 
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surface. U.S Department of Energy states that a one (1) megawatt capacity wind 

turbine electricity production offsets approximately two (2) kilotons of CO2 mass in 

the atmosphere [6]. The wind turbine installation has increased six (6) folds in the last 

ten (10) years due to high global demand [7]. 

 

Figure 1.3 Wind Power Capacity Trend by Top 10 Countries [7] 

 

 

Figure 1.4 Global Wind Power Capacity Growth from 2009 – 2019 [7] 
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1.2.2 History of Wind Energy 

Wind energy was harnessed using vertical axis type design during the early 

10th century by the Persians for mechanical work such as lifting the water and grinding 

the wheat or corn. The Dutch invented the first windmills using the horizontal axis 

type design in the early 15th century for agricultural use. And, the Americans 

improvised the design to pump water to their homes. The first horizontal axis wind 

turbine used to produce electricity was built in 1888 in Cleveland, Ohio. And, the first 

vertical axis wind turbine was constructed more than a century later in California [8]. 

Figure 1.5 First electricity production wind turbine, 1888 in Cleveland, Ohio [9] 

Even though the concept of wind energy has started earlier, it was not popular 

as compared to fossil fuel which had monopolized power generation in Europe and the 

United States (US) during the industrial revolution. The wind power conversion 

system was back in the picture in the later 1970s after the oil crisis hit the economy 

badly. Large scale wind energy technology companies emerged in the United 

Kingdom, Germany, Denmark, and the US. In the last decade, the Europeans have 

emerged as the front liners in wind energy installation followed by China and the US 

[6] [7].
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According to market analysts, increasing the global investment in wind energy 

shows huge potential for wind energy application as one of primary sources of 

renewable energy and is predicted to continue to grow exponentially in the next five 

years by the market analyst [7] as shown in Figure 1.6. In the past, wind turbines were 

mostly constructed on the land. However, technology innovation has enabled offshore 

wind installation to address some of the hurdles faced by onshore wind turbines such 

as noise pollution and aesthetic concern raised by the public [10]. Alternatively, 

Vertical Axis Wind Turbine (VAWT) has been predicted as a potential solution for the 

implementation of WTs in urban and semi-urban areas [11] [12]. 

Figure 1.6 Global Investment in Renewable Energy (Wind and Solar), 2019 [7] 

1.2.3 Wind Turbine Technology 

The wind turbines are commonly classified based on the axis of the turbine 

rotation; the Horizontal-Axis Wind Turbine (HAWT) and Vertical-Axis Wind Turbine 

(VAWT). 

1.2.3.1 Horizontal-Axis Wind Turbine (HAWT) 

The HAWT rotors are designed to face parallel to the headwind. The basic 

components of HAWT are the tower, rotor blade, wind sensors, and nacelle which 

encloses the generator, gearbox, yaw, and pitch control motors, power conversion, and 

control system. The airfoil-shaped turbine rotor blade has an engineered aerodynamic 

design that converts the linear motion of the wind into rotational mechanical energy 

and drives the generator through a gearbox. The air pressure difference created in the 

upper and lower region of the airfoils creates an aerodynamic lift force similar to an 
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airplane’s design which turns the rotor when the wind speed exceeds a certain starting 

velocity. Modern HAWT rotor designs are three (3) blade system which has the 

balance between cost and optimal efficiency in terms of lift to drag ratio. The main 

advantage of HAWT is its capability of self-starting and higher wind-to-mechanical 

energy conversion efficiency. HAWT construction is durable which enables access to 

strong winds at high elevations on land and offshore. However, the production and 

installation cost of HAWT is relatively high due to stronger construction to support 

the nacelle and rotor blades at the top of the tower. High voltage cables run from the 

top of the tower to the ground add up to the overall CAPEX of the HAWT [13] [14]. 

1.2.3.2 Vertical-Axis Wind Turbine (VAWT) 

The VAWT rotates at the perpendicular axis to the ground. The generator and 

all power system equipment located on the ground at the base of the VAWT. There are 

two (2) popular VAWT designs which Darrieus and Savonius studied and developed 

in the market [15]. Due to the turbulent and chaotic nature of wind near the ground 

and in the urban environment, the HAWT solution becomes less effective. Thus, the 

VAWT has gained attention as a potential candidate for urban application because of 

its design to operate at lower wind speed, no noise concern and lower capital 

investment due to lesser support structures, and no yawing requirement [16]. Even 

though VAWT operates irrespective of the wind direction, the wind-to-mechanical 

rotational energy conversion efficiency is relatively lower and has limited room to 

regulate the speed at high wind scenarios compared to a small-scale HAWT design. 

Besides, VAWT design is mostly non-self-starting and requires high torque 

management which makes the cost-of-energy (COE) value higher compared to HAWT 

for urban application. Therefore, the wind turbine considered in this thesis is a small 

scale HAWT design [15] [17]. 
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Figure 1.7 HAWT and VAWT Typical Configuration [18] 

1.2.4 Maximum Power Extraction 

Wind speed is unpredictable and changes stochastically at all times. Thus, a 

carefully designed tracking and control mechanism needs to be in place to enable the 

power conversion system to operate at optimal point at all time. Without proper 

optimization, a significant amount of wind energy will be wasted unnecessarily leading 

to efficiency decrement. One of the methods is using maximum power point tracking 

(MPPT) algorithms to track the power generated and control the power converter 

circuit to match the optimal operating point [19]. The MPPT algorithm controls the 

wind energy conversion circuit to operate at an optimal power point condition as 

shown in Figure 1.8. In this thesis, the focus will be analyzing the Direct Power Control 

(DPC) MPPT algorithm such as P&O and INC application to control the duty cycle of 

the DC-DC converter to achieve maximum power tracking capability at the highest 

efficiency possible. Details about the WECS and MPPT algorithms will be discussed 

in Chapter 2. 
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Figure 1.8 Wind Turbine Maximum Power Point (MPP) [20] 

1.3 Problem Statement 

The primary challenge of the P&O MPPT algorithm is the selection of suitable 

perturbation step-size. The conventional P&O (C-P&O) utilizes fixed step-size for all 

wind conditions which has several drawbacks. Smaller step-size leads to slower power 

tracking capability and becomes less efficient during rapid wind speed changes. 

Meanwhile, a bigger step-size tracks the maximum power point (MPP) faster but has 

a large oscillation near the MPP region that takes a long time for convergence which 

affects the accuracy of the system. Researchers are studying several variable step-size 

P&O (V-P&O) MPPT algorithms to overcome the drawbacks of C-P&O however, 

step-size selection is still one of the complex tasks for the P&O MPPT algorithm. On 

the other hand, INC MPPT is largely employed in solar PV systems and detects MPP 

with significant precision. However, the calculation and decision-making algorithm is 

relatively complex and takes more computing power. Besides, INC MPPT is less 

researched on WECS thus not much information available for reference. Thus, 

extensive research on P&O and INC MPPT algorithms and finding the most effective 

MPPT strategy that the has a balance in terms of system complexity and efficiency 

with relatively low computational power for small-scale WECS application are greatly 

necessary. Therefore, in this work, the MPPT performance between INC and P&O 

MPPT are analysed in terms of MPP tracking convergence time, oscillation and 

efficiency relative to conventional P&O MPPT. 
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1.4 Research Objectives 

The objectives of the research are: 

(a) To control the maximum power point tracking in wind energy 

conversion system using Perturb and Observe, and Incremental 

Conductance MPPT algorithms. 

(b) To simulate the studied algorithm in MATLAB / Simulink environment 

under various input wind speeds. 

(c) To analyze and compare the tracking performance of Incremental 

Conductance and Variable Step Perturb and Observe MPPT algorithms 

against conventional Perturb and Observe MPPT algorithm. 

 

 

 

 

1.5 Scope 

The main scopes of this work are the proposed algorithm analyzed for small 

scale WECS (≤10 kW) for off-grid DC load application in urban or sub-urban 

environments. Secondly, the proposed algorithm analyzed for a WECS using a fixed 

pitch wind turbine standard model, three-phase Permanent Magnet Synchronous 

Generator (PMSG), full-bridge diode rectifier, and DC-DC converter circuit. Next, the 

proposed algorithm will be implemented to control the duty cycle control of the load 

side DC-DC converter circuit. Also, the generator side control and/or mechanical 

means of control design is not the focus of this paper. Finally, this work will be 

simulated in a MATLAB environment using standard Simulink model for the wind 

turbine, rectifier, PMSG, and DC-DC converter provided by Mathworks. 
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1.6 Hypothesis 

Step-size selection large or small has significant influence in the maximum 

power point tracking and control system. Optimal performance in maximum power 

point tracking in terms of speed and accuracy for a small-scale wind energy conversion 

system can be achieved using a variable step-size P&O MPPT algorithm. 

1.7 Report Outline 

The report is organized as follows: 

(a) Chapter 1 introduces the concept and types of wind energy technology. The 

wind energy conversion system and its key components are discussed in this 

chapter. The research motivation, problem statement, research objectives, and 

scopes of study are discussed in this chapter.  

(b) Chapter 2 presents a detailed literature review on the various MPPT algorithm 

schemes researched in the industry. The chapter highlights the limitations and 

assumptions of these researches and points out specific gaps that will be 

addressed in this report providing analysis and improvement to the mentioned 

MPPT algorithm in the literature. 

(c) The methodology of simulation circuitry design and MPPT algorithm 

implementation is discussed in Chapter 3. The chapter briefly explains the 

thesis work methodology taken in this research. The research activities, 

progress and timeline will be presented in this chapter. 

(d) Chapter 4 presents the result and discussion about this study. The simulation 

results and correlation between the studied algorithms and the MPPT algorithm 

performance is discussed in this chapter. 

(e) Chapter 5 concludes the report on the studied approach and summarizes the 

outcome of the analyzed algorithms in terms of optimal accuracy and speed in 

tracking the maximum power point of the wind energy conversion system at 

the end of the research. 
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